
IBM POWER6
microprocessor
physical design
and design
methodology

R. Berridge
R. M. Averill III

A. E. Barish
M. A. Bowen

P. J. Camporese
J. DiLullo

P. E. Dudley
J. Keinert

D. W. Lewis
R. D. Morel

T. Rosser
N. S. Schwartz

P. Shephard
H. H. Smith
D. Thomas
P. J. Restle
J. R. Ripley

S. L. Runyon
P. M. Williams

The IBM POWER6e microprocessor is a 790 million-transistor
chip that runs at a clock frequency of greater than 4 GHz. The
complexity and size of the POWER6 microprocessor, together
with its high operating frequency, present a number of significant
challenges. This paper describes the physical design and design
methodology of the POWER6 processor. Emphasis is placed on
aspects of the design methodology, technology, clock distribution,
integration, chip analysis, power and performance, random logic
macro (RLM), and design data management processes that
enabled the design to be completed and the project goals to be met.

1. Introduction

The IBM POWER6* microprocessor (Figure 1) powers

the new IBM iSeries* and pSeries* systems. The

microprocessor is fabricated in 65-nm silicon-on-insulator

(SOI) technology [1] and operates at frequencies of more

than 4 GHz. The microprocessor is a 13-FO41 design

containing more than 790 million transistors, 1,953 signal

I/Os, and more than 4.5 km of wire on ten copper metal

layers. A robust multidomain power distribution network

operates field effect transistors (FETs) at several

operating voltages, with most of the chip running

nominally at 1.15 V. Several frequencies of the POWER6

microprocessor sub-block (e.g., core and nest) were

measured with multiple clock meshes using small skew

clock grids. Several types of FETs, such as those with

high and low threshold voltages, were utilized to balance

power and performance. The complexity, size, high

operating frequency, technology challenges, and power

restrictions greatly exceeded those of earlier POWER*

microprocessors.

The design methodology for the POWER6

microprocessor was completely enhanced in order to

achieve a high-quality design. Innovations in design data

management were key to obtaining a productive multisite

design team. The POWER6 processor design

methodology, together with a tight schedule, introduced

challenges to the multisite design team that were beyond

those of earlier POWER microprocessors. This paper

describes these challenges in more depth as well as the

results in the areas of design methodology, technology,

clock distribution, integration, chip analysis, power and

performance, random logic macro (RLM), and design

data management processes.

2. Design methodology overview

The POWER6 microprocessor design methodology is

based largely on the design methodology of the IBM

POWER4* processor [2] and the IBM eServer* z900

server [3]. For adequate execution time, the POWER6

microprocessor was designed hierarchically and each level

in the hierarchy was designed concurrently. This is

described in more detail in the section on the POWER6

physical design and chip integration methodology.

Further, advancements in methodology allowed the

design to remain in the pre-layout design phase much

longer than in previous projects in order to optimize logic

and floorplan and then to quickly execute layout

implementation with relatively few surprises (see

Section 9). In addition, several advances over previous

projects were made by the multisite design team on auto-

design cleanup and optimization both pre-layout and

�Copyright 2007 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

1Fanout of 4 (FO4) is a technology-independent metric used to describe the amount of
logic that can be used between latches. For example, 1 FO4 is the amount of time it
takes a signal to propagate through a gate driving four gates of equal size.

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 R. BERRIDGE ET AL.

685

0018-8646/07/$5.00 ª 2007 IBM

post-layout. Figures 2(a) and 2(b) depict the POWER6

processor methodology for pre-layout and post-layout

design closure, respectively. Table 1 describes the

acronyms used in Figure 2.

The transistor count of the POWER6 processor design

increased by about a factor of 3 and 4 over that of the

POWER5* and POWER4 processor designs, respectively.

This required enhanced tools and methodology so that

the much larger design could be handled. Productivity

enhancements were critical to achieving the design goals.

These included enhancing the tools in order to increase

design automation (DA), improve their accuracy, analyze

designs automatically rather than manually, reduce the

number of false errors, and manually review items that

required analysis while reducing both runtime and the

number of iterations required to complete the design. In

addition, these productivity enhancements required the

development of an IBM flow manager tool, the

TaskManager, to manage the flows shown in Figure 2.

The logistical and communication challenges

associated with an increasingly global design team

required more robust enhancements in the integration

space. Enhancements throughout the methodology were

required in order to improve our ability to communicate

and control changes at the interfaces between macros.

This is described in more detail in Section 9.

Power and performance optimization is becoming

more critical. A process was created to evaluate power

and performance in the POWER6 microprocessor

throughout the design (see Section 7). The design team

incorporated multiple voltage levels and slower meshes in

key sections of the design. This required the creation and

verification of multiple power distribution and clock

grids. Many of the tools had to be enhanced or created to

accommodate this design style. Meeting the very

aggressive cycle time of this design while minimizing the

power requirements required significant improvements to

the timing analysis process; this information was then

exploited by other tools in order to reduce power in the

non-timing-critical paths. (See the sections on circuit

optimization and post-layout circuit optimization for

performance and power.)

The smaller lithographic geometries required

enhancements to the electrical analysis and physical

design processes of earlier IBM microprocessors. For

example, signal electromigration (EM) analysis was

required to ensure hardware reliability. (Details on other

analysis tools are presented in the section ‘‘Chip analysis

closure’’ and its associated subsections.) On the physical

design front, better estimation of wire parasitics was

required to predict non-delay-scaling wires. This is

described in more detail in the next section.

Custom pre-layout advancements

Since engineering changes can be prevalent during the

early stages of the design and much time and effort are

required to produce a custom layout, the pre-layout

schematic design activities had to consider the physical

implementation in order to minimize the number of

changes that result when the actual physical layout and

wiring data becomes available. Previous IBM

microprocessor projects [2, 3] utilized technology device

models, device parasitic models, and wire models when

building schematics. This allowed the designers to

perform multiple analyses at the schematic level before

designing the physical layouts. Given the impacts of

resistance � capacitance (RC) delays due to smaller wire

geometries, wire model engineering at the schematic level

was a source of inaccuracy. This was addressed by the

development of pre-placed layout components with

Steiner representations of interconnects between

components. Key parameters placed on components were

added within the schematic. Components were placed in a

pre-layout using the IBM placement by instance

parameter (PIP). This pre-layout was analyzed using the

IBM Steiner estimated parasitics (STEP), which spliced

Figure 1

Floorplan of the POWER6 microprocessor.

L2 caches

(yellow)

Cores

(blue)

I/Os

(black)

R. BERRIDGE ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

686

Figure 2
Macro- and global analysis-based (a) schematic and (b) physical design of the POWER6 microprocessor.

Schematic,

PIP floorplan

Netlister, STEP

Cycle

simulator (Custom macros)Compile

Reports

(Placement

with Steiner)

(Standard cell macros)

ChipBench*

(estimated

extraction)
VIM

netlist

EinsTuner, LAVA

(circuit optimization)

EinsCheck

rules

Test

model

Noise

rules

Power

model

GateMakerEinsCheckIBMmlsa

Cycle

simulator

Cycle

simulator

Macro design data

Reports

VIM netlist

and PDM

DRC LVS YLDLayout

automation

TestBenchGlobal

EinsCheck
3DNoise ASF

CPAM

EinsTuner

LAVA
Global VHDL

Formal

verification

Compile

Reports

Niagara (LVS)

Erie

(parasitic extraction) Netlist and

chip data

merge

Unit, core, and chip design data

VIM netlist

Floorplan and routing

3DX

(parasitic

extraction)

VIM netlist

Refined floorplan

Unit, core, and

chip design data

VHDL

Synthesis/place

and route

Formal

verification

Transistor-level

netlist

Global

EinsCheck

(a)

(b)

Timing

rules

Noise

rules

EinsCheck

rules

Test

model

Power

model

EinsTimer* 3DNoise TestBench ASF

EinsTLT IBMmlsa EinsCheck GateMaker CPAM

Standard

cell macro

Final layout

and netlist
DRC

NMC

IMC

YLD

RVIA

MASH

Timing

rules

EinsTLT

Formal

verification

Compile

Reports

EinsTimer

Macro VHDL

MPA

MacroPower

abstract

ABG

Abstract

model

Transistor-level VIM

parasitic netlist

Schematic, netlist Complete layout

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 R. BERRIDGE ET AL.

687

technology-specific wire models into the schematic

netlist.2 Among the more accurately placed models in

netlist, downstream analysis tools were more effective.

Circuit optimization

The IBM EinsTuner circuit tuning tool improved timing

slack or performance by equally weighting many of the

critical paths simultaneously while attempting to push the

entire slack into positive territory with the IBM total

positive slack (TPS) mode. Additionally, IBM free area

recovery (FAR) within the EinsTuner tool included the

optimization of noncritical paths in which circuits were

reduced in size without migrating into critical or design-

limiting territory. Essentially, this mode optimized these

circuits for area recovery but, most importantly, reduced

gate width by reducing the overall circuit leakage or dc

power content of the macro design.

Table 1 Terms, abbreviations, and acronyms for Figure 2.

Tool name Full name Description

VHDL (Very high-speed integrated circuit [VHSIC]

Hardware Description Language)

Modeling language to describe logical

functionality of a system

PIP Placement by instance parameter Custom macro cell placer

STEP Steiner estimated parasitics Steiner wire parasitic estimator

IBM EinsTuner — Circuit tuning tool

LAVA Leakage avoidance and analysis FET type switcher tool

VIM Very-large-scale integration (VLSI) instance model —

IBM EinsTLT Transistor-level timer Transistor-level timing tool

IBMmlsa IBM macro-level signal analysis Transistor-level functional noise tool

IBM EinsCheck — Transistor-level electrical checking tool

GateMaker — Transistor-level test model generation tool

CPAM Common power analysis methodology Power, voltage drop, voltage rail

electromigration checker

IBM ChipBench — Chip viewing tool

IBM EinsTimer — Chip timing tool

3DNoise — Chip functional noise tool

Global EinsCheck — Chip electrical checking tool

TestBench — Chip testability tool

ASF Austin linear simulator flow Chip voltage drop and voltage rail

electromigration checker

DRC Design rule checking Technology rule checking

LVS Layout versus schematic Layout and schematic equivalence tool

YLD Yield Yield checking tool

Niagara — Shape environment

Erie Efficient rapid integrated extraction Macro extraction tool

NMC Niagara methodology checks Hierarchy checker

IMC Integration methodology checks Hierarchy checker

RVIA Redundant via generation Auto via insertion

MASH Migration assist shape handling Layout shapes manipulator

ABG Abstract generator Hierarchy contract management tool

MPA Macro power grid abstract Macro power grid extractor

3DX 3D extraction Chip wire extractor

2A netlist describes connectivity in an electronic design.

R. BERRIDGE ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

688

The IBM LAVA (leakage avoidance and analysis)

application was added to exploit additional device types

[high-voltage threshold (VT) and low-VT] for both

custom and standard cell designs. High-VT devices were

substituted for regular-VT devices in very noncritical

circuit paths in order to minimize leakage, whereas low-

VT devices were incorporated into the design in highly

critical circuit paths for increased performance gain while

maintaining low leakage levels.

The combination of the EinsTuner and the LAVA

applications, coupled with parameterized common

components, allowed designers to optimize their pre-

layout designs.

Post-layout circuit optimization for performance and

power

As mentioned above, the RC delay became a larger

fraction of overall delay in previous processors, so the

EinsTuner had to be made operational on parasitic

extracted netlist. The circuit sensitivity simulation engine

utilized by EinsTuner was typically limited to capacitive-

loaded networks because of runtime implications. Given

this limitation, a method was developed to measure the

RC delay between components within the IBM transistor-

level timing (EinsTLT) tool [4] and abstract the results to

EinsTuner for circuit optimization. With this method, the

IBM linear wire model (LWM) enabled EinsTuner to

take into account the RC delay during any circuit

optimization mode, but more importantly, optimization

now was made possible on both schematic and layout-

based netlists.

With EinsTuner capable of optimizing layout-based

netlists, opportunities for optimization were made

possible even late in the design phase. If formulated,

specific layout constraints could be passed to EinsTuner

to adjust or optimize circuit width for additional

performance. During any parallel design development

strategy and late in the design cycle, significant

optimization changes could result in the need to modify

electrical or physical areas of the designs. To assist the

designer with additional performance gain and minimal

layout destruction, cells that were identified with ‘‘white

space’’ or FET fingers could be lengthened to increase

current gain to improve performance. These cells and

corresponding transistors were fed to EinsTuner in order

to improve slack while remaining within the boundary of

the cells and using only the available white space. This

methodology, IBM layout aware tuning (LAT), enabled

increased performance to critical macro designs with

minimal disruption to the physical layout.

In addition, the IBM migration-assist shape-handling

(MASH) capability was used to optimize layouts in order

to impose stress on FET channels to improve their

performance. The result was auto-optimization balancing

power/performance requirements.

3. Fabrication technology

The POWER6 microprocessor is fabricated in a

state-of-the-art IBM 65-nm proprietary twin-well

complementary metal-oxide semiconductor (CMOS) SOI

technology [1]. This technology features ten levels of

copper interconnect, in addition to other features that are

given in Table 2.

The wiring planes consist of four levels of single-width,

single-thickness wiring, two levels of 2X width and

thickness,3 two levels of 4X width and thickness, and two

levels of 8X width and thickness (widths and thicknesses

are shown in Table 2 and a wafer cross-section is shown

in Figure 3). The technology features several innovative

aspects, including a low-k dielectric on the lower eight

planes. The upper two planes of wiring use standard

fluorinated tetraethylorthosilicate (FTEOS) material.

Controlled collapse chip connect (C4) solder-ball

technology is used for chip-to-package interconnections.

Electronic fuses (eFUSEs) are used to reduce the cost

of manufacturing and testing and to allow faster eFUSE

Table 2 Features of the IBM CMOS SOI technology.

n-FET gate Lpoly 40 nm

p-FET gate Lpoly 35 nm

Gate oxide 1.12 nm and

2.35 nm

Metal layers Pitch Thickness

M1 200 nm 135 nm

M2 200 nm 175 nm

M3 200 nm 175 nm

M4 200 nm 175 nm

M5 400 nm 350 nm

M6 400 nm 350 nm

M7 800 nm 570 nm

M8 800 nm 570 nm

M9 1.6 lm 1.2 lm

M10 1.6 lm 1.2 lm

Vdd (logic supply) 1.15 V

Vcs (array supply) 1.15 V

Vio (I/O supply) 1.20 V

32X wire width and thickness indicates that a given wiring plane contains wires twice as
wide and thick as a minimal wire in a given technology. A 2X wire has smaller
resistance but larger parallel plate capacitance to adjacent wires. A greater-than 1X
wire is typically used for timing-critical paths.

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 R. BERRIDGE ET AL.

689

personalization. A precision pþ polysilicon resistor is

used in place of the buried resistor (BR) diffusion resistor.

In addition, tensile and compressive strain liners are

used to improve the respective drive strengths of n-FETs

and p-FETs. Automated routines were developed to

customize the strain liner layers after final tuning and

timing optimization for best performance, even in areas

of reusable standard-cell circuits.

As in previous product generations, dual gate oxide

thicknesses are used: 1.12 nm for high-performance

devices and 2.35-nm oxide for low-leakage devices and

for devices that are subjected to higher voltages. An

accumulation-mode thick oxide decoupling capacitor

structure is used to minimize current leakage. In addition

to low-VT, regular-VT, and high-VT transistors, a

superhigh-VT (SHVT) device was added for use in arrays.

Significant effort and attention were given to yield

and design-for-manufacturability considerations. For

example, much effort was devoted to maximizing contact

redundancy. For robust power distribution, triple-width

metal with 2 3 2 arrays of vias was used for power

interconnect. Also, wherever space permitted, additional

redundant signal vias were added in post-design

processing (Table 3).

There are two significant differences from the earlier

POWER4 and POWER5 microprocessor [2] technology,

which were used in the POWER6 processor 65-nm

technology [1] in order to reduce cost and increase yields.

First, a fixed 250-nm coarse grid was imposed on

polysilicon gates in all logic and array circuits in order to

improve channel-length control and device tracking.

Second, the local tungsten interconnect layer, which was

used in previous technologies, was not used so that yield

would be improved and process complexity reduced.

Extensive use was made of high-VT devices in non-

performance-critical logic, with added use of

programmable longer-channel-length devices for

additional power savings.

4. Clock design

Global clock distribution design

The POWER6 microprocessor global clock distribution

methodology was derived from the one used on previous

pSeries server chips [2]. The design contains 621 clock

buffers, providing clock signals at three different

frequencies to five separate meshes across the chip. Two

full-frequency core meshes and one half-frequency nest

mesh cover the entire chip and share a single phase-locked

loop (PLL). Two memory controller meshes are driven

from a second PLL. A single distribution was created for

each frequency, resulting in three independent

distributions. Each distribution consists of a multistage

buffered tree sourced from a PLL, which drives a set of

large sector buffers composed of three inverter stages.

Each sector buffer drives a tunable H-tree, which is the

last stage of tree wiring. The H-tree connects at many

approximately evenly spaced points across the clock

mesh. The local clock buffers (LCBs) in each macro are

wired using a bottom-up method to the desired chip-level

clock mesh. Figure 4 illustrates the sector buffer to LCB

network. The increasing size and complexity of the

POWER processor chips require improved methods for

design and optimization of the clock distributions.

Methodology and improvements

The multistage buffered trees between the PLL and sector

buffers consist of seven logic inversions (via inverters) for

Figure 3

A 65-nm wafer cross-section showing metal layers.

8�

4�

2�

1�

Metal 9–10Metal 9–10

Metal 7–8Metal 7–8

Metal 5–6Metal 5–6

Metal 1–4Metal 1–4

Figure 4

Illustration of the clock network from the output of the sector

buffers, through the tunable H-trees to the mesh, and down to the

local clock buffer inputs via twig wires (located throughout the

chip).

Tunable H-treeTunable H-tree

Clock meshClock mesh
Sector bufferSector buffer

Local clock bufferLocal clock buffer

to mesh twig wiresto mesh twig wires

R. BERRIDGE ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

690

the memory controller or nine inversions for the core and

nest distributions. All were designed as symmetrically as

possible in order to maintain low skew at each buffer

stage and at the inputs to the sector buffers, even with

power supply voltage and process variations. In previous

chips, the large trees were designed and tuned manually,

with repeated simulations. Because of the high clock

frequencies required, technology scaling, increasing

variability concerns, and an overall increase in

complexity, a more sophisticated approach was taken in

the POWER6 microprocessor. Initially, a cross-section of

the tree network was designed and carefully optimized.

Derivative-free tuning [5] was used to optimize the wire

lengths, wire widths, and buffer sizes at every stage in the

simulated tree views. Transition times, overshoots,

undershoots, skew, duty cycle, power, and sensitivity to

process and voltage variations could all be included in the

objective function. After the cross-section was optimized,

it was copied and expanded into a network covering the

entire chip. A tool specifically designed for this purpose

was used to move the optimized tree network into a

physical layout while adhering to the POWER processor

image and to other blockages. The entire buffered tree

was then resimulated with the necessary manual wire

adjustments being made as the chip design converged.

The final H-tree networks driven by the sector buffers

were tuned to account for asymmetric wiring, non-ideal

sector buffer placements, and varying device and wire

loads seen on the mesh. As in the previous POWER

processors, a tuning method [6] was used to adjust the

wire widths in order to meet a slew specification required

by the LCBs. The tuning also reduced skew across the

mesh and subsequently at the inputs to the LCBs. New to

the POWER6 microprocessor is the ability to tune sector

buffer sizes in addition to H-tree wires. The first inverter

stage of the sector buffers remained constant, while the

second and third stages were adjusted to change the

output drive strength. This tuning allowed additional

refinement, more consistent slew at sector buffers driving

different loads, skew reduction across the clock meshes,

and an overall decrease in power.

The POWER6 microprocessor design improves upon

the previous methodology used to connect the LCBs to

the large clock meshes. A virtual mesh with reserved

wiring tracks was implemented so that a customized

routing tool created a twig path from the LCB input pins

up to the clock mesh, following the reservation of the

virtual mesh. This modification allowed more flexibility in

the locations of the clock routes while still maintaining

the clock distribution requirements such as slew and

skew. The main benefits of the new method occurred at

the unit integration level, thereby reducing wire

congestion for easier signal routing and allowing more

flexibility in floor planning. The change also resulted in

smaller wire lengths on the higher-resistance metal layers

and, therefore, reduced the load driven by the clock

distributions and clock power.

Physical design and results

As mentioned above, there are three distinct clock

distributions on the chip, two synchronous distributions

driven by a single PLL and one asynchronous

distribution driven by a second PLL. The first

synchronous signal is distributed to the two cores running

at a frequency of .4 GHz. The majority of this

distribution was designed as a hierarchical element inside

the core (see Figure 1), with only the first four buffer

stages outside the core. In its entirety, the synchronous

distribution to a single core consists of 44 tree buffers that

drive 88 sector buffers with a slew target of 44 ps at the

LCBs. In order to further reduce skew in the clock design,

wires in the same stage are shorted across the core at

selected locations.

The second synchronous distribution supplies a clock

signal that runs at half the core frequency of the rest of

the chip, which is called the nest. The nest distribution is

the largest on the chip, with 200 sector buffers that drive

3,174 locations on the mesh. It also contains the only

continuous clock mesh. The LCBs connected to this mesh

run at half the core frequency, which allows the

distribution to be tuned to a higher slew target. Using

clock control signals, the nest frequency can also be

supplied to the two memory controller meshes. The sector

buffers for the memory controller are discussed in further

detail below.

Prior to the fourth buffer stage of the synchronous

distributions to the core and nest, there exists a

programmable-delay buffer. This buffer is non-inverting

and can be used to introduce a controlled delay into the

trees. Because the two core and nest clock meshes are not

Table 3 POWER6 redundant via statistics.

Level Total power

þ signal

Signal

only

Redundant

signal

Non-redundant

signal

V1 96.1% 92.0% 4,801,740 55,218,200

V2 95.6% 89.3% 2,847,220 23,752,700

V3 99.3% 97.3% 290,683 10,439,300

V4 97.1% 80.5% 464,152 1,918,450

V5 98.8% 92.2% 134,461 1,593,210

V6 96.0% 78.6% 152,179 559,335

V7 96.6% 82.4% 103,208 482,031

V8 79.9% 75.1% 39,876 119,941

V9 69.4% 81.3% 17,267 74,847

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 R. BERRIDGE ET AL.

691

shorted together, there could be potential static clock

skews across the meshes. A high-resolution, high-

linearity, programmable-delay clock buffer was designed

to alleviate these static clock skews. The programmable-

delay buffers used in the POWER6 microprocessor have a

range of 40 ps and a step value of 2 ps. The delay control

settings may be determined empirically or from

measurement circuits such as ‘‘skitters’’ [7]. The

programmable-delay buffer may also be used to shut off

the clocks to cores in partially good chips for additional

power savings.

The memory controller blocks are driven by the

asynchronous distribution sourced from a second PLL.

This distribution contains 44 total buffers and runs at a

frequency of 3.2 GHz. The sector buffers in this

distribution are more complex than those in the

synchronous distributions. Most of the chip runs on a

single voltage plane, but the memory controller blocks

run on a different voltage plane at a higher level. The

memory controller sector buffers allow for voltage-

level switching, thereby increasing the voltage level of

the output signal from that of the input signal. Each

sector buffer also contains a multiplexer that is used to

choose between the nest synchronous signal and the

asynchronous signal. This is accomplished by providing

control signals and a nest tree input to the sector buffers

on the memory controller distribution. The multiplexer

allows the memory controller blocks to run at the nest

frequency for testing and other purposes.

Because of the size of the clock networks, simulating a

single distribution took a few days. To reduce simulation

and turnaround time for tuning, the distributions were

simulated in multiple sections. Once the individual

sections were tuned, they were combined and simulated,

verifying that areas near section boundaries were not

violating any clock specifications such as local skew.

Finally, each distribution was successfully simulated in its

entirety, thus ensuring a robust clock design.

5. Integration

Chip floorplan

The early phase of the chip floor-planning process was

dominated by the effort to balance the area and wiring

resources across the cores, large units, buses, and the chip

C4 footprint. Figure 1 shows the location of the major

blocks. The two cores are placed on the north and south

edge of the chip and four 2M level 2 (L2) cache arrays are

located in the four corners of the chip. The core load/

store units are aligned with the L2 controllers in order to

minimize the L2 cache access path. The cores operate on

a 1:1 clock, the nest operates on 2:1, and the memory

controller operates asynchronously at ;1.5:1.0. The off-

chip drivers and receivers are distributed in horizontal

bands across the chip. The 1,953 signal I/Os on the chip

support five symmetric multiprocessor (SMP) fabric4

buses, including three on-node (X, Y, Z) and two off-

node (A, B) level 3 (L3) buses, in addition to a memory

bus and a GX bus.5 In order to control the impedance of

the C4-to-driver or receiver wires, the distance was

limited to 800 lm. The chip has 5,449 power I/Os that

were divided into six voltage domains: Vdd, the default for

logic; Vcs, for static RAMs (SRAMs); Vio, for I/O drivers

and receivers; Vd0, for core 0; Vd1, for core 1; and Vsb, for

standby power. Because the cores operate at highest

frequency and have the highest power density, the area

under the cores is void of signal C4s and has the highest

concentration of power C4s. Figure 5 shows the chip C4

footprint with color-coded voltages and white circles

representing the signal I/O locations.

The multiple voltage domains presented new challenges

to the physical design process:

� Power distribution regions were defined with power

overlap shapes that were recognized by the power bus

generation tools.

Figure 5

The POWER6 microprocessor C4 power pin footprint with color-

coded voltages and white circles representing the signal I/O

location.

Core

Core

Nest

4Fabric buses allow all nodes on a bus to connect to one another. These are used in
multicore designs and multichip designs to connect all the nodes.
5GX bus is used to connect to an I/O drawer on the system.

R. BERRIDGE ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

692

� Voltage translation circuits were required for signal-

crossing the voltage domains. The voltage translators

require access to multiple supply voltages. Voltage

attributes were added to all macro I/Os to facilitate

checking for translation consistency. A new tool, an

IBM power rail checker (VIPER), was developed as a

postprocessor for the VHDL [Very-high-speed

integrated circuit (VHSIC) Hardware Description

Language] compiler to check that all signals crossing

a voltage region have the appropriate translators.

Global EinsCheck, another new IBM tool used for

electrical checking, was developed to verify electrical

connections and design rules across domain crossings.
� The automated buffer insertion tool, an IBM

buffering tool (AddBuf) had to be updated to

recognize the power regions, place buffers in the

appropriate regions, and add the appropriate power

connectivity.
� Power clamps had to be added to smaller voltage

regions to provide electrostatic discharge (ESD)

protection. For small regions, the intrinsic

capacitance is too small to protect the circuits from an

ESD event. ESD is the phenomena that occurs when

static electricity discharges into a circuit (usually from

human handling) and can severely damage the

circuitry.

In order to achieve frequencies greater than 4 GHz and

minimize latencies, use of the higher-level faster wiring

planes had to be optimized. Priority was given to the

clock, power, and C4-to-I/O wires on the upper planes;

anything remaining was made available for signal

routing. A tagging process was developed that allowed

for specifying wire codes and a preferred wiring layer

range on a per-net basis. Initially, the net tags were set on

the basis of length, and then they were updated on the

basis of timing feedback. A full range of wire width and

spaces were defined for performance and power

optimization, as shown in Table 2.

The buses were wire-coded early in the design process.

The wire code information was stored in a directory of

files that could be updated and then reapplied to the

netlist with each new logic drop. After a floorplan that

could be wired was established, future wire code updates

had to be reviewed by the integration team.

A fabric bus plan was developed that allocates the

wiring resource that connects the core and units across

the chip. The bus plan was also used as an input to the

buffer grid generation. Buffer slots were allocated over

units.

Compared with the previous POWER processor

design, major enhancements were made to the automated

buffer insertion tool, AddBuf. The tool now supports

automatic latch insertion. This feature was used during

early iterations of the floorplan. Latches were auto-

inserted in the floorplan so that timing could proceed in

parallel with adding the required latches to the chip

VHDL. The tool was updated to place buffers

automatically in legal physical locations, thereby allowing

most of the buffers to be added without manual

intervention. The chip has ;500,000 buffers, with the

majority being automatically placed. The tool also

supports automatic placement of spare buffers. The

global phase of the router was used to guide the buffer

placement on the chip. This minimized the impact of the

buffers on the detailed router. The process generated

good results except for the cases in which buffer slot

availability was limited. Feedback from the global router

was also used to evaluate wiring congestion and guide

floorplan moves.

New steps added to the physical design flow
� Auto-place new clock and data staging macros. To

facilitate the synchronous control of all the chip clock

control blocks, a ten-stage clock control pipeline was

distributed across the chip. An automated process

was developed to connect the clock controls to the

appropriate stage. After new logic was placed, the

placement information was used to reassign the clock

control connectivity and back-annotate the VHDL.
� Review tag updates and apply updated tags to netlist.
� Reassignment of scan clocks on the basis of region.
� Run global router and pass results to AddBuff.
� Add flues. Flues are via stacks that go from the macro

pin up the higher wiring planes and help minimize

driver source impedance and reduce signal EM

problems.

On the basis of the timing results, fails were fixed with

buffer updates, wide code updates, or logic changes.

Routing

The chip, core, and unit routes were done with Cadence

CCT routing tool. The routing process was set up to

support the wire classes defined in Table 2. The target was

to have 100% via redundancy on the vias for the 1X layers

(see Table 3 for results).

6. POWER6 power distribution design and
analysis
The POWER6 processor chip power distribution was

partitioned into multiple domains to enable dynamic

voltage throttling [8]. The use of multiple voltage domains

on the POWER6 processor chip drove a unique set of

challenges for the power distribution design and

specification. Two voltage rails for array macros were

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 R. BERRIDGE ET AL.

693

required to power the SRAM cells and the supporting

logic (Vcs), while logic and interface were powered by the

logic power domain (Vdd). Vcs isolation was required

since the SRAM cells have functionality issues at low-

voltage operation. In addition to array macros,

additional power rails were required for off-chip circuitry

(Vio, Vsb) to provide a constant common interface level

for intrachip communication. The memory controller

units were also powered by Vio because this function must

interface asynchronously with off-chip memory logic. The

PLL function was also powered by the Vio domain to

allow constant operating voltage.

The design of the power grid to support the various

voltage domains across the chip required a good

understanding of the placement options needed by the

design group to achieve optimal floor-planning capability

as well as the load current demands for each placed

object. In order to eliminate the need of providing more

than two voltage rails and ground to any portion of the

chip, a floorplan constraint was placed to isolate off-chip

circuitry in common regions throughout the chip. Since

arrays required more floor-planning flexibility, a global

power grid containing Vcs was used outside the I/O areas.

Within the I/O areas, which included the memory

controllers, a Vio grid was included. Vdd and GND

(ground) were interleaved with these two rails throughout

the chip.

A coplanar design approach in which signals and

power are interleaved on all levels of metal was used,

while power delivery to the chip was provided by solder-

ball connections. In order to establish the appropriate

ratio of power and GND to all portions of the chip,

current demands for each object had to be known. This

information was provided on a macro basis by analytical

techniques (see Section 7) that incorporated active and

leakage power estimates as a function of macro FET

widths and latch counts. Using this load data, a power

grid could be specified and evaluated using an IBM power

grid analysis tool called the Austin linear simulator flow

(ASF) [9].

ASF provides complete power grid analysis capability

from concept phase evaluation to final verification. The

basic engine within ASF is a shapes processor and

extractor that formulates a circuit matrix directly for the

resistive power grid. This eliminates the need of an

intermediate SPICE (simulation program with

integration emphasis) file. Load information, i.e., macro

placements and power estimates, is sourced into the tool

via a power map file. A linear simulator is employed to

evaluate the circuit for voltage decrease and EM from C4

to the lowest level of metal. For concept phase

evaluation, ASF has a built-in power router that allows

the user to define and evaluate power grid options

quickly. This capability facilitates sensitivity analysis of

various power grid options to determine the optimal

distribution of power stripes for each level of metal and

for each power rail. With this approach, power pitch and

widths were specified for each level of metal. In areas

where dual-voltage domains existed, Vio or Vcs stripes

were substituted for Vdd on the basis of the current splits

and internal resistance (IR) drop requirements for each

rail. Because all currents sink to ground, GND

distribution occupied 50% of the power grid real estate

(space), while the other 50% was divided between Vdd,

Vio, and Vcs on the basis of load requirements.

In addition to specifying the on-chip power

distribution, C4 placements played a key role in

minimizing voltage drop. Because of high current

demands in certain areas of the chip and the need to

supply dual voltages within certain regions, C4

placements became contingent on the floorplan. Thus,

periodic evaluation of the chip power grid was performed

to ensure adequate C4 placements with respect to

floorplan changes. This evaluation loop was performed

several times before the package design freeze date.

Final power grid verification included the voltage drop

and EM of the actual power grid layout with more

accurate macro power estimates. ASF accepts power grid

data in the form of a PowGeo file, which defines the

power grid physically. In order to translate designs in

Cadence to a PowGeo, an intermediate VLSI (very-large-

scale integration) instance model (VIM) database was

built for each unit in the design for the level being

evaluated. Because of complexity and data volume issues

associated with macro layouts, a Niagara (IBM shapes

infrastructure tool) function was adopted to convert this

Cadence data to an IBM netlist format VIM for the

macro power grid only. This process, called macro power

grid abstract (MPA), an IBM macro power grid

abstractor tool, resulted in significant data reduction.

VIM flattening and translation to the PowGeo was done

within the IBM ChipBench framework. In addition, early

analytical macro power estimates were replaced with a

transistor-based analysis tool known within IBM as

CPAM (common power analysis methodology) [10].

CPAM incorporates linearized device models to facilitate

fast simulation of the macro netlist for a set of input

vectors. The output from CPAM is a set of maximum

average currents at each contact area (CA) via location

within the macro and is stored in the IBM DB2*

database. ASF reads this data for all macros in the design

and attaches the CA currents to the power grid via

placement information in the design power map. The

power map is a physical description of the power grid. A

flow diagram of the ASF verification process is shown in

Figure 6.

To improve turnaround time and reduce memory

requirement, final verification of the power distribution

R. BERRIDGE ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

694

was performed on the nest and core areas independently.

Since the two cores and associated C4 placements are

mirrored and are exact copies, only one core had to be

evaluated. Such an approach allowed nest and core

evaluations to proceed in parallel, which further reduces

turnaround time.

Contour maps generated from ASF for the Vdd rail are

shown in Figure 7 for both the core and the nest. These

contour maps provide visual feedback of voltage drop

issues associated with power grid implementation

problems or clustering of ‘‘hot’’ macros. If hot spots

violated the voltage drop specification, additional power

shapes were placed in available signal tracks to bolster the

grid in the offending areas. In some cases, the macro

power estimate was reviewed to determine whether high-

power activity was real or could be limited through circuit

design modifications.

POWER6 physical design and chip integration

methodology

The POWER6 dual-core microprocessor chip was

designed in four levels of hierarchy from an integration

perspective. This is similar to other server microprocessor

chips designed in the IBMSystems and TechnologyGroup

(STG) [2, 3, 11]. The macro, unit, core, and chip levels

were designed concurrently with extensive track-sharing

across all levels of metal. Examples for each level of

hierarchy include an adder for a macro, a fixed-point unit

for a unit, an entire microprocessor core for the core level,

and the nest and multiple core subsystems for the chip.

Teams were located across the globe, so design logistics

had to be optimized. Each unit team consists of logic

architects, logic designers, logic verification personnel,

circuit designers, a timing take-down leader, and an

integrator. Circuit designers generally are responsible for

the macro level of hierarchy. Macros contain transistors

and two to five levels of metal. Integrators are used to

place the macro blocks and wire the level of hierarchy

(unit, core, chip) to which they were assigned.

Getting data management and physical design

processing correct was a significant issue throughout the

Figure 6

ALSIM flow (ASF) process used to validate power grid integrity.

(IR: internal resistance; EM: electromigration.)

ASF

(*dat)

VIM

Pin data

genVIM

dfii2vim

Macro

I_ca @ xy

DB2

From

macro

IR/EM

process
Niagara

MPA (mac)

Mosaic

to VIM

No sim power

uniform load

(Raleigh)

Cadence

(autoRouted)

C4Power map PowGeo

Report/plots

IR/EM

ChipBench

power_ana

alsim_geo

Via blkg

Figure 7
V

dd
 voltage contour maps for (a) nest (or non-core) and (b) core

areas.

1.15 V

1.13 V

1.12 V

1.1 V

1.15 V

1.13 V

1.12 V

1.1 V

Core

CoreCore

Core

NestNest

(a)

(b)

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 R. BERRIDGE ET AL.

695

design cycle in order to minimize schedules. Physical

design content varied throughout the development

process. During high-level design (HLD), virtual

integration techniques were developed to support rapid

3- to 4-day timing design turnaround times to the logic

team. Virtual techniques include rudimentary abstracts,

timing-rule estimates, non-legalized buffer placements,

virtual latching, flattening unit hierarchies, and routing of

wires using the global router (i.e., no detailed wiring), as

well as limited macro wiring contracts. A description of

the timing take-down strategy is described in the section

‘‘Chip timing closure.’’

To support the rapid update of logic deliverables into

the physical and timing reduction flows, an internal

library management system was used and is summarized

here but described in more detail in Section 9. Having a

global team across several time zones that spanned 7

hours placed a number of requirements on the design

data and tool infrastructure:

� Design intellectual property (IP) had to be shared

among other microprocessors. Design IP includes

physical blocks/sub-blocks and VHDL. This IP was

shared throughout the hierarchy among four other

chips (primarily at the macro and unit levels of

hierarchy). Interlocking levels or configurations of

data between chips were successfully transferred to

prevent deletion of data when one chip no longer

required a particular configuration of blocks.
� An audit subsystem (see Section 9) was required to

run nightly on the master data repositories to yield

some rudimentary verification of methodology and to

compare last-changed checks against tool execution

date-and-time stamps.
� The ‘‘unit’’ level of hierarchy usually is the long path

in the schedule for releasing the chip data to mask

manufacturing. To process logic drops efficiently in

physical design, the unit processed logic drops

asynchronously from other units for the majority of

the design cycle. This was done to allow the unit to

proceed rapidly and independently. Some units could

take drops every 7 to 10 days, while others might be

on a 10- to 14-day drop cycle. Discontinuities

occurred at times, but all were usually resolved within

the next logic drop. It was only toward the end of

implementation that synchronous updates were used

for final verification, a point at which all data had to

match up exactly. Several weeks of efficiency were

gained using this procedure.
� Tools and data had to be accessed locally to reduce

network latency. An extensive shadowing system was

used to keep sites synchronous. If a site was taken

offline (planned or inadvertently), other sites could

continue to work.
� All physical design data had versions with check-in

and checkout capability, and multiple users had to be

able to create a checkout in parallel with others.

‘‘Branching’’ in the data manager (DM) was a quick

way to make editable views for chip analysis work.
� Multiple data levels were used in the data repository

for each logic drop to deliver data to various

verification teams. It was common to use a separate

level for noise analysis, design for test, estimated

timing, extracted timing, physical design, and physical

design verification. The version and interlock

mechanisms in a library management system allowed

each group to see a static set of data for analysis.

Several enhancements were made to the integration

HLD and implementation methodology in order to

support the POWER6 microprocessor. Some changes

also control a design process across disciplines. Complex

metal blockage (keep-outs) contracts can arise across any

layer of hierarchy. To foster better communication and

blockage management across the hierarchy, an abstract

generator (ABG), the IBM hierarchy blockage

management tool, was developed to interlock both the

cover and the abstract of any delivery of the hierarchy. At

the macro–unit interface, ABG was used to formalize the

pin, block size, and blockage map agreement between

circuit designer and integrator. At other levels of the

hierarchy, ABG solidified this wiring agreement among

multiple integrators. Core and chip nonnegotiable

content (power, clocking, and C4 wiring) was passed

down through the hierarchy as a system of parent covers

using a tool not described here. This section presents both

the HLD and the ABG techniques in depth.

High-level design

In previous projects, the physical design was locked into

decisions the logic team had made without detailed input

about the physical implementation. For this project, we

were able to provide feedback about the physical

implementation to the logic team earlier than ever before

and build floor-planning information into the physical

microarchitecture and latch point decisions. This was

paramount to support the ultrahigh frequency targets for

the POWER6 microprocessor. To do this, methods were

required to deal with an incomplete logical design and

incomplete macro definitions. This is an early physical

implementation of HLD, and in some cases, virtual

methods were used to facilitate this. Virtual methods are

most often used early in HLD and allow a designer to

‘‘cheat’’ on the current physical design in order to be able

to complete something quickly. If the design cannot pass

R. BERRIDGE ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

696

timing with these ‘‘cheats,’’ then they are not necessary.

As the design progressed, fewer virtual methods were

used and the design moved closer to its release to

manufacturing.

Early in the design process, themacros are often far from

complete. There are several procedures that can be used to

give us a reasonable approximation of the macro. Logic

designers are given tools to approximate the size of amacro

on the basis of its cone of logic6; this is also used to generate

an estimated timing rule for the macro. Given this size

and experience with other similar logic, the macro abstract

can be defined and wiring resources can be allocated over

the macro using ABG and by assigning pin locations.

Early in HLD, the netlist was flattened through units to

the macros. Using this flattened netlist, rough areas were

allocated to a unit and its macros were placed in this area.

This step was undertaken before all the data stacks had

been implemented. In regions where there were known

logic deficiencies, placement area would be reserved and

wiring blockages would be created to simulate the wiring

resource this logic would need. The global router was

then used to test the feasibility of the overall chip design.

Many what-if scenarios could be quickly tested, and a

viable floorplan with placements and major bus routing

decisions could be solidified. When a floorplan was

selected, the units could begin their implementation. The

units were given an outline that is based on the placement

of their macros and a wiring contract that is based on the

congestion map, thereby providing the unit with resource

to wire its nets and the top-level resource to wire its nets

through the unit. This early flat environment was

invaluable to ensuring that good early decisions were

made in macro placement and bus routing.

With the contracts in place, units could begin to work

more autonomously and begin to attack the specific

problems in their units. Initially, the I/Os of the units

were forced to be snapped to the driver or sink7 of the

macro, allowing the top level to manage the path to the

pin. This reduced churn associated with keeping the edge

pins of units in the correct place while the unit macros

and the units themselves were still in placement churn.

When this placement churn began to settle, the pins of the

unit were snapped to the boundary. Top-level routing was

used to locate a position on the edge of the unit by

examining where the route left the unit.

Buffering during HLD has various modes beginning

with virtual buffering and ending with complete buffer

placement. Early in the design, it is not worth the effort to

completely buffer the design with accurate buffer

placements. If early virtual buffering with ideal buffer

locations shows timing issues, these must be fed back to

the logic team before moving to more detailed buffering.

Several virtual buffering methods are available for use.

The timer can be programmed to assume ideal buffers

during RC calculations for the net. Alternatively, the

buffering tool can be set to ignore blockages and place

buffers at the ideal location on the net. During this

procedure, the global routes of the nets can also be used

to drive the location of the buffers. As the design

improves, detailed placement and analysis of the

buffering solution becomes worthwhile.

Routing during HLD also follows this approach of fast

or virtual early runs to provide feasibility feedback, with

more detailed routing runs being performed only as the

initially uncovered problems are fixed. One of the most

significant problems with routing early in HLD is access

to pins. Initially, not much time is spent building the cell

abstracts or ensuring that top-level infrastructure and

macro placements are all in sync, which causes pins to be

difficult or impossible to route to. Virtual buffering also

causes issues with accessing pins. A method was

implemented of cutting holes around a pin and on all

layers above the pin in order to allow the router to be able

to access the pins. At first, only global routing runs are

undertaken to check the design. These run fast and give

us views of congestion that can be used to analyze the

current floorplan. These global routes are also used to

drive pin placements and buffering decisions, and they

can provide input to the timer to get congestion impacts

into the timing runs.

The primary reason to be involved in this HLD is to

provide timing feedback. There are several modes in

which timing can be run (see the section on chip timing

closure, below). Integrators trade off turnaround time

versus accuracy in order to provide timing results for

their unit. The early HLD timing analysis quickly

identifies problem areas that the integrator and logic team

can attack. In previous designs, this timing feedback

would not have been available until much later in the

design cycle, when logic and partitioning changes are

expensive. Most fixes were done through placement and

wiring resource (i.e., width and layer assignments)

changes. The new HLD methods allowed us to make this

feedback available much earlier and to identify these logic

and partitioning changes. This enabled us to reduce the

time it took to physically design this chip.

Abstract generator

Unlike the physical design methodologies used in

previous POWER microprocessors, the methodology

used in the POWER6 microprocessor employed a single

application, the IBM abstract generator (ABG), for the

creation and management of detailed blockage contracts

at all levels of hierarchy: macro, unit, core, and chip.

6A cone of logic can be defined as many logical inputs being compared and resulting in
a few outputs.
7A driver is the gate output and a sink is a gate input. Pins were snapped on to these
connections.

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 R. BERRIDGE ET AL.

697

Furthermore, ABG was designed to support all design

phases. For example, early in the macro design phase,

ABG supported the use of abstracts as the source for pin

locations. Later in the design phase, macro layouts

became the final source for pin locations. Such flexibility

ultimately allowed for highly concurrent, hierarchical

design phases.

One challenge in designing a single application to

support blockage contract management at all levels of the

hierarchy is the inherently different design flows used. For

example, blockage information is traditionally

transferred from the macro level to the unit level. This

bottom-up approach makes it difficult to communicate

stable wiring resource needs to upper levels of the

hierarchy. Conversely, chip, core, and unit blockage

information is traditionally transferred to lower levels of

the hierarchy. This top-down approach makes it difficult

to communicate stable wiring resource needs to lower

levels of the hierarchy. Therefore, to support a highly

concurrent hierarchical design approach, it was necessary

for ABG to support bottom-up and top-down design

flows simultaneously. In order to do this, features were

incorporated into ABG that were previously available

only in distinctly separate applications. First, traditional

wiring contract management concepts were introduced.

However, the method by which this was accomplished

was unique. Rather than clutter the ABG graphical user

interface with a plethora of special-purpose widgets, three

new contract cell views were introduced to guide ABG:

cellName_mine, cellName_yours, and cellName_nobody.

Their respective purposes were to convey to ABG the

wiring resource reservations required by the child cell

view, the parent cell view, as well as any exclusive wiring

resource reservations that neither the child nor the parent

cell view could use. These cell views contained shapes

drawn by the designer, which represented the literal

wiring resource reservations required. In order of

precedence, these wiring resource reservations will

hereafter be referred to generically and conceptually as

mine, yours, and nobody reservations.

In combination with the graphical contract cell views

previously described, another cell view was introduced,

cellName_image, hereafter known as the image file. This

text-based cell view defined a special data structure that

conveyed a host of advanced functionality to ABG. In

addition to keeping complexity out of the graphical user

interface, another key feature of the image file was

repeatability. Because the controls and tacit assumptions

were maintained in the image file, they were persistent

and reproducible regardless of who ran the application. A

few of the key blockage modeling features and techniques

that were controlled by the image file are now described.

One key component of any wiring contract management

system is how the area around a pin shape is modeled.

Traditionally, pin regions present a unique problem

because they represent an area that is ‘‘owned’’ by both the

child and its parent. This shared wiring resource is

ultimately represented as a lack of blockage around each

pin (in the abstract) or pin location (in the cover). As a

result, steps must be taken to ensure that design-rule

correctness is maintained in pin regions. The traditional

approach, which dates back to the POWER4

microprocessor design project, was also employed in the

design of the POWER6 microprocessor. In order to

maintain design rule checking (DRC)8 routes, child metal

shapes around the area of each pin were modeled as net

shapes. This conveyed their locations to the router so that

it could, in turn, avoid common DRC violations such as

notching errors.

Other pin modeling features that were based on

learning experience from previous projects were

incorporated into ABG and deployed for use in the

POWER6 microprocessor. One unique innovation was

the ability of the designer to control pin cutouts

(blockage shape erasure) on the metal layer directly above

the pin. Furthermore, these cutouts could be confined to

pins with particular geometries (lengths and widths). In

addition, the designer could also enable a feature that

would insert via obstructions on the layer directly above

the pin. These features could be used selectively during

times in which unique design situations would not always

guarantee pin access to the router.

Modeling of clock pin regions in ABG was given

additional attention. Because of the critical nature of the

clock mesh, connections to clock pins must be made as

directly as possible and with minimal wire jogging. To

that end, ABG automatically created an implicit yours

reservation at each clock pin location. These reservations

had the following characteristics: The blockage shape was

created on the same metal layer as the clock pin, the

blockage shape width was that of the clock pin, and

finally, the blockage shape length spanned the entire

breadth of the place-and-route boundary and was

oriented in the preferred wiring direction of the metal

layer in question. These features were customizable using

the image file, including whether the clock reservation

scheme was enabled for the questionable cell.

Another key blockage modeling feature that was

deployed and heavily used in the POWER6

microprocessor design was an edge reservation scheme.

Quite often, macros placed their primary input and

output pins at or near their place-and-route boundary.

This was especially true for our synthesized macros. The

density of these pin shapes could lead to unique routing

challenges and congestion at macro boundaries. To

address this issue, an edge reservation scheme could be

8Design rule checking implies that the physical design shapes meet spacing criteria
specified in the technology manual.

R. BERRIDGE ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

698

enabled and customized using the image file. Through this

track-based reservation scheme, the designer could define

the number of edge tracks (from the place-and-route

boundary inward toward the cell center), their boundary

locations (north, south, east, or west), as well as their

reservation type, namely mine, yours, or nobody.

Similar to the graphical cellName_mine,

cellName_yours, and cellName_nobody contract cell

views, the image file could also be used to create mine,

yours, and nobody reservations. The image file

implementation was track based, which lent itself to

defining periodic, pattern-based wiring reservations. For

example, macros were typically granted exclusive use of

the first four metal layers, but only a small percentage (if

any) of metal layer five (perhaps in one out of every four

or five wiring tracks). The image file made defining these

requirements trivial.

The image file also supported a method for defining

region-based track reservations. This scheme allowed the

designer to define one or more bounding boxes that

marked out regions within the overall place-and-route

boundary where special consideration was required. The

capabilities inherent to defining the overall place-and-

route boundary region were also available to these

subregions. For example, the track-by-track periodicity,

metal layer, and track ownership (mine, yours, or nobody)

were all customizable settings definable in the image file.

Early resolution of the bottom-up and the top-down

specification of the wiring contract naturally fell to the

level of hierarchy that was completed first, which was

almost always the macro level. Because the wiring

contract was specified separately from the design data,

the next highest hierarchical level ultimately had control

of its preferred definition of the wiring contract. This

method was a unique departure from previous POWER

microprocessor projects, in which control was largely

driven by design data contents, which were extremely

variable, as well as by graphical user interface settings,

which were easily forgotten. Ultimately, this scheme of

separation created the right environment for hierarchical

wiring contract maintenance because it forced a

continuous, open line of communication between

designers working at all levels of hierarchy.

In keeping with the inherent give-and-take nature of

hierarchical wiring contract maintenance, another key

ABG innovation that was new to the POWER6

microprocessor was the use of a distinct order of

precedence for the mine, yours, and nobody reservation

scheme (Figure 8). Because a yours reservation could

reclaim wiring resource that was previously defined in a

mine reservation, the POWER6 microprocessor design

team was provided with a simple, yet powerful, method

for defining and manipulating wiring contracts. This

unique ABG capability, along with those previously

described, enabled highly concurrent design phases for

the entire POWER6 microprocessor design team, which

ultimately contributed to the success of the project.

Chip analysis closure

Chip timing closure

Timing of the POWER6 chip brought with it many

challenges. With any challenge comes advancement in

process and technique. The cross-site macro and global

timing teams at IBM provided common timing tools and

a methodology solution that was state of the art. This

resulted in an overall timing methodology with roots in

previous POWER processor designs [2].

The POWER6 microprocessor timing closure effort

required rapid iteration and parallel execution at all levels

Figure 8

Bottom-up abstract generator (ABG) flow depicting abstract and

cover generation, as well as the order of precedence of image-file

and contract cell view processing. Primary input data: rose

cylinder; optional, user-generated input data: teal cylinders;

intermediate output data: orange cylinders; internal ABG

processing steps: rectangles; final output data: blue cylinders.

Shrink wrap,

copy terminals,

and pin cutouts

AddNobody image

Yours image

Mine image

Add

Subtract

First-pass

abstract

Add

Yours contract

Mine contractSubtract

Add

Pin deletion

and shape

inversion

First-pass

cover

Subtract

Add

Add

Subtract

Shapes

reduction
Final

cover

Final

abstract

Cover

generation

Abstract

generation
Layout

Nobody contractAdd Add

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 R. BERRIDGE ET AL.

699

of the hierarchical design, which included custom macro,

RLM, unit, core, nest, and top-level chip timing. In order

to enable this concurrent timing closure, the development

and fine-tuning throughout the entire project of a timing

assertion methodology were necessary to provide

accurate boundary conditions that would be transferred

down from the top level to the lower levels of the

hierarchy. These conditions were in the form of timing

contracts of arrival and required arrival times, input

slews, and capacitance loads, which were key inputs to

unit-level timing as well as to EinsTLT and logic synthesis

processes. In addition, slack apportionment techniques

were used in some areas of the nest design to divide slack

targets among macros, which enabled faster overall

timing closure for the logic in redesign.

The levels of timing accuracy throughout the

POWER6 chip timing closure naturally followed the

progression of the design. Timing during the early HLD

phase consisted of zero-wire-delay analysis to assess logic

partitioning issues when floorplans were not yet

available. The next timing modes used as the design

progressed included cycle reach, virtual buffering, virtual

latching at the unit, core, nest, and chip levels as

floorplans became more stable, while buffering and

staging latches were not yet in place. Following was

Steiner-based analysis, with per-net wire code and wire

layer-use information as input to the timing run. Global

routes, later followed by detailed routes in the timing run,

were also supported in modes of operation in which the

routing information was read in part of the design (VIM)

netlist. The final and most accurate level of timing was a

fully three-dimensional extracted parasitics-based timing

analysis for all levels of the design. Throughout the

design cycle, as changes were made, the timing analysis of

functional units was often in a fallback, less-accurate

mode until the physical design was able to catch up to the

next level of accuracy. With such fine granularity

available in the timing methodology, the POWER6

microprocessor design had the most accurate timing

information available at any given time, which led to

fewer timing surprises along the way.

At the global chip level, the hierarchical design

approach led to a hierarchical timing approach and often

presented the chip timing analysis with a mix of accuracy

levels available at a given time. Since the different areas of

the design do not progress equally through the analysis

modes described earlier, a method was needed to use the

best timing information available at all levels. Some

functional units were farther along in the design cycle

with extracted parasitic representations of global wire or

logic macros, while other pieces of the design were still in

a Steiner estimate or schematics-based mode of timing.

The global timing process, which executed under IBM

ChipBench (IBM floorplanner) invoking the EinsTimer

static timing tool, supported a true mix of parasitics in the

design across all levels of the hierarchy. The wiring and

electrical subsystems of the tool would effectively stitch

together the most accurate parasitic information available

for each piece of the hierarchical source or sink

connection before network reduction and analysis. This

enabled true concurrent timing closure in a hierarchical

environment.

In previous designs such as the POWER5

microprocessor, the timing closure required multiple

analyses at each timing corner to close on functional and

scan-related timings. For the POWER6 microprocessor

design, through enhanced circuit modeling and clock

phase definitions, only a single timing run was needed at

each timing corner to gain visibility into functional

timing, system scan, and tester scan timings. This single

analysis also covered multiple voltage domains and

multiple design frequencies throughout the chip. In

addition, implemented on the POWER6 processor was

the use of clock pulsed latches, which enabled increased

frequency and power savings in the design. Through the

clever definition of nearly 70 clock phases, the only

analyses that were necessary include the basic fast and

slow chip timing plus a noise impact on timing analysis

(coupled noise analysis) to cover all system modes of

operation.

Coupled noise impact on timing techniques, which are

used to determine the delay degradation due to capacitive

coupling and simultaneous switching effects, was greatly

improved over that of previous POWER processors.

Previous analysis involved a wire-to-wire coupling

estimate (k-factor) approach that translated into a

capacitive uplift on a wire, thus translating into an

increased delay effect. Folding in a true noise analysis

invoking IBM 3DNoise (IBM noise analysis tool) [12] in

EinsTimer using the IBM EinsSI (IBM coupling impact

on timing subsystem) enabled calculation of the actual

noise introduced on a victim net from its aggressors and

subsequently determined the change in delay on the wire

and slew on the net. This resulted in more accurate

analysis than in previous designs, which was warranted at

these tighter cycle times and wire-delay-per-path

restrictions in the POWER6 processor.

In order to achieve rapid chip timing closure in the

POWER6 microprocessor, automation and consistency

of input design data and output reports were key

objectives. At all levels of global timing from unit, core,

nest, and chip, the timing team implemented a hands-off

approach to timing setup and execution. In previous

designs, input data specification processes for design

netlists (VIMs), macro timing rules [dependency check

macros (DCMs)], and extracted parasitic information

[parasitic data models (PDMs)] had to be done manually,

but in the POWER6 processor, these are fully automated.

R. BERRIDGE ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

700

Using the same chip-level IBM CAD library9 (ICL)

control file, which contains the design bill of materials to

ultimately build, check, and ‘‘tape out’’ the chip, enabled

the automatic derivation of inputs to the timing run, with

all the information needed to perform the analysis

without designer intervention. This allowed consistency

and accuracy of results during the closure process. The

introduction of the IBM view late timing report (VLTR)

into the POWER6 processor flow enabled storage and

retrieval of report information in a DB2 database. VLTR

was used in the chip timing closure process to assign path

ownership and document timing path solutions and to

generate timing statistics and histograms to show timing

take-down progress throughout the design. VLTR was

also used as an analysis tool with the ability to invoke the

EinsTLT for a path-based transistor-level timing

expansion of an abstracted path from a global timing run

using its input assertions. Consistency ultimately enabled

fewer false iterations throughout the timing process.

Consistency of timing results in the POWER6

processor design was equally important. Traditionally,

RLM logic was represented by standard cell gate-level

delay/slew equations, which differed from the more

accurate transistor-level analysis employed in custom

logic. To reduce this variability, each custom macro or

RLM was represented by a transistor-level abstract

timing model during the chip-level analysis. The benefit of

equal treatment in analysis ultimately translates into

easier hardware timing debug, knowing that the overall

design has a more deterministic path ordering.

Because the design of the POWER6 processor was so

complex, consisting of millions of signal nets, more than

500,000 buffers for slew closure, more than 45 million

latches, 1,165 unique design macros with 11,998

instantiations, and more than 50.4 million late-mode

timing checks, automation, consistency, and accuracy of

analysis were key to achieving a high-frequency design.

Figure 9 shows the resulting late slack histogram for the

chip timing closure process in the POWER6 processor

design at the target frequency for reference. (Slack is the

amount by which a timing check passes or fails. Negative

slack indicates a failing check.)

Timing accuracy improvements

Timing accuracy was improved for clock uncertainty and

array timing. Furthermore, transistor-level timing noise

analysis was added to minimize problems when a design is

implemented in hardware.

Clock uncertainty is a significant component of the

cycle at this frequency. This uncertainty was broken into

its various components and modeled separately to

improve the accuracy of the timing analysis.

Furthermore, a delay modifier was applied to the early

and late switching times for each circuit in order to

account for increasing delay variability due to process

variation.

The embedded arrays historically have been in the

cycle-limiting paths for processor designs. Many of the

array macros were completely timed using the EinsTLT

tool. This was used instead of relying on PowerSpice

(IBM SPICE tool) simulation results that must come

from a manually generated subset of the design to obtain

the timing models for EinsTimer to use further up in the

design hierarchy.

To meet the cycle-time requirements in the critical

paths around the embedded SRAMs, several aggressive

design techniques were used:

� Logic functions that would normally be performed in

RLMs were implemented as custom logic inside the

custom array macros.
� Self-timed programmable pulse generators were used

for clock generation.
� Extensive use of cycle stealing through these paths

reduced the impact of clock arrival time variation on

the delays.

In the past, we could use PowerSpice simulation on a

subset of the design to determine whether the array

macros would meet timing requirements; however, this

technique is labor intensive and error prone. Significant

amounts of logic added to these designs made this

approach impractical. This was addressed by improving

the static timing analysis tool (EinsTLT) so that it could

handle macros that contain arrays.

Figure 9

POWER6 microprocessor timing histogram depicting distribution

of timing slacks for the frequency goals of the chip.

0

1,000

2,000

3,000

4,000

5,000

6,000

Timing slack (ps)

L
at

e-
m

o
d
e

ti
m

in
g
 c

h
ec

k
s

�
2
0 0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

2
2
0

2
4
0

2
6
0

2
8
0

3
0
0

9The IBM CAD library is a design data manager primarily written as a data manager
to Cadence design environments.

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 R. BERRIDGE ET AL.

701

Several problems had to be addressed to make this

possible:

1. A significant number of timing paths and checks are

associated with timing all the cells in an array.

Timing all the paths into and out of every cell can

result in prohibitively long runtimes for timing

analysis at the macro and chip level, as well as large

timing rules.

2. Read/write bitlines are bidirectional. The read and

write operations had to be analyzed separately.

3. EinsTLT contains basic support for domino circuits

and clock gating and shaping. The custom circuits

that are in the embedded array macros use complex

domino and clock gating and shaping circuits.

EinsTLT had to be enhanced to have robust support

for domino and clock gating and shaping circuits in

order to improve its checking and accuracy.

The number of timing paths and checks that were

required for the arrays was reduced by exploiting the fact

that the layout for arrays tends to be very regular. The

earliest and latest switching times for the wordlines and

bit columns tend to be at the edges of a physical subarray.

For example, consider the cells with the earliest and latest

switching times to and from the cells as being the outside

of a donut, and the switching times at the pins of the cells

are within the donut hole and fall between those around

its edge.

The donut-hole cells were retained in the simulation

model so that real wire loading and capacitance values

could be used. EinsTLT was stopped from timing into or

out of the donut-hole cells by preventing the model from

trying to create timing information for these cells. We

then post-processed the resulting timing data to ensure

that the cells were timed with the worst-case timings at

their wordline and bitline pins.

POWER6 functional noise analysis

To ensure functional operation of the interconnect

infrastructure on the POWER6 processor in the presence

of various noise sources, a combination of analyses were

performed in conjunction with the application of an

upgraded server group noise methodology to predict and

bound potential problems at various phases in the design

process.

Functional problems can occur when the composite

noise signature is greater than the circuit noise margin.

Predicting the actual noise signature is difficult and can

only be bounded in practical terms. The noise signature

has traditionally been thought of as a combination of

coupling effects, common mode, and differential mode

power supply variations. A recent study by Deutsch et al.

[13] demonstrated that differential mode noise adds

inversely to the common mode and coupling effects. The

study also concluded that with even moderate power

supply decoupling, the common mode assumption for

extraction is adequate and accurate. Therefore, the

differential power supply effect is neglected when

considering functional problems, since this noise source is

always less than the circuit noise margin. In addition to

dynamic effects, leakage biasing in 65 nm [1] technology

had to be considered. It was observed through an internal

study that skewed beta-ratio circuits could result in

significant biasing effects due to subthreshold leakage. In

addition, gate leakage could create voltage drops between

source and sink locations for high-fanout net topologies,

which effectively reduced the circuit noise margin. These

dc biases were treated as additional noise sources in the

POWER6 processor noise methodology.

Although circuit functionality problems could occur

when the total noise is greater than the noise margin,

stage-to-stage propagation could result in evanescent

behavior of the noise. This effect is already taken into

account using the IBM macro noise tool IBMmlsa (IBM

macro-level signal analysis) [14]. At the global level,

multiple buffer stages that provide logic connections

between pins are prevalent throughout the design. In

order to predict the noise propagation effect on these

circuits, a new noise abstract model was formulated to

calculate the buffer output noise as a function of input

noise and output load capacitance. This formulation was

incorporated into the IBM noise simulation tool,

3DNoise. In addition to predicting noise propagation

through buffers, functional failure is determined by noise

levels at latches or the number of buffer stages exceeding

the noise limit. The latch failure criteria are accounted for

by rerunning IBMmlsa for noise failure at input pins

using a noise-assertion criterion. The noise assertion is the

dc level and pulse amplitude/width determined by

3DNoise for every input pin of the macro.

The global noise methodology used in the POWER6

processor is shown in Figure 10. The IBM 3DX global

extraction tool operates in GL1 (IBM graphic language; a

shape format), a translated data format from the Cadence

database, and outputs frequency-dependent resistance,

inductance, and capacitance (RLC) data for all nets as

required [14]. 3DX output is a PDM. Noise simulations

are performed for every net in the design using 3DNoise,

which incorporates the R(f)L(f)C data as a synthesized

circuit for evaluation. In addition to the noise calculation,

timing windows, which represent the switching interval

for each aggressor and sink sensitivity interval, were

generated by the global timing tool, EinsTimer. 3DNoise

determines the composite noise amplitude and pulse

width on the basis of the aggressor window overlap

within the receiver sensitivity window. In order to

R. BERRIDGE ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

702

determine noise failure, noise margin calculations were

performed for all macro inputs using IBMmlsa, which

also provided the impedance data for all macro outputs.

Both subthreshold and gate leakage biasing were

calculated at the macro level within IBMmlsa and fed

forward to 3DNoise for evaluation via the noise abstract.

IBMmlsa also provided special-purpose noise abstract for

buffers to facilitate noise propagation within 3DNoise.

This was obtained by calculating an output noise table as

a function of output load capacitance and input noise

level for each buffer in the design.

The POWER6 processor design was unique in the sense

that chip wire routing never occurred over the core areas.

This allowed the functional noise verification process to

be implemented on the core and nest independently.

However, because of the high level of wiring interaction

between lower-level units and either the chip or the core, a

flat evaluation was required for each design. IBM GL1

preprocessing code was used to merge unit and chip (or

core) GL1 as a preparation step to run 3DX.

Noise problems resulting from the net-based evaluation

flow were reevaluated through the use of either the buffer

noise propagation procedure or the noise assertion at the

macro input. If failing nets were easy to fix by either

rebuffering or moving wires, buffer noise propagation

required input noise information for the victim driver and

noise results at each of the victim sinks. In addition,

downstream buffer information was also gathered and fed

into 3DNoise for evaluation using the modified buffer

noise abstracts. 3DNoise would calculate both incident

and propagated noise and compare the total noise with

the circuit noise margin for each stage. If more than two

successive stages failed this criterion, the failing net was

fixed by rebuffering or moving wires. In the situation in

which a noise fail occurred at the input to a macro, the

macro designer reran IBMmlsa with noise assertion to

observe propagation within the macro. If noise at latch

inputs was excessive, the global net had to be fixed.

Although these two processes were available to reduce the

need for a net-based analysis, in some cases fixes were

easily identified, which minimized the implementation of

these additional procedures.

Signal electromigration

Unilateral current flow can lead to mass transport

caused by electromigration (EM). Interconnects (wires

and vias) degrade by EM effects. EM reduces

interconnect reliability by shortening the time to failure

(TTF). Several models for EM exist, e.g., see Black’s

equation [15]. Basically, the TTF is inversely proportional

to a power of the dc current density jdc and exponentially

proportional to the inverse of the temperature T: TTF ;

exp(c/T)/jdc
n. As shown by this equation, EM quickly gets

worse at higher temperatures. On the power distribution

nets with strict unilateral currents, EM was calculated

and checked in previous projects and it was also checked

in the POWER6 microprocessor project. This section

describes the secondary effect on signal lines by

temperature increases on signal lines and how it was

measured in the POWER6 microprocessor.

Global signal EM

Global signal lines between macros carry a bidirectional

current because of charging and discharging the parasitic

interconnect and transistor gate capacitances. Even with

the gate leakage, the dc component is negligible for EM

of a signal interconnect for the 65-nm CMOS process.

The bidirectional current causes self heating (or Joule

heating) of the interconnect because of the electrical

power dissipation due to the resistance of the

interconnect. Because of thermal conductivity of the

material, self heating causes a temperature increase not

only in the interconnect itself but also in the neighboring

circuitry.

Self heating not only induces EM on neighboring

interconnect with dc current components such as the

power distribution and local interconnects between

Figure 10

Global functional noise flow. (RLC: resistance, inductance, and

capacitance; VIM: VLSI instance model; ICL: IBM CAD Library;

PDM: parasitic data model; MLSA: macro-level signal analysis.)

RLC extraction

For macro

noise

analysis

DA

Functional

fails and

logs

DA

Pre-processing

(3DX

panel)

DA

DA

Generated

by MLSA

into DM

(ICL query in

run 3DX)

-noiseAbstracts

Post-

processing

(run 3DX)

DA

3DX

Flat VIM

EinsTimer

Reports

PDM

3DNoiseNDRs

Noise

asserts

Timing

files

Noise

abstracts

Wire

data

Unit/core/

chip GL1

from

DA (GL1

generation

via EFP)

Unit/core/

chip VIMs

from

DM (ICL

query in

3DX panel)

VIMs

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 R. BERRIDGE ET AL.

703

transistor drains and sources, but also causes a

temperature gradient along the interconnect that might

lead to additional failures in the interconnect. In order to

control the self heating of the interconnects, design

guidelines were set to limit the temperature increase

caused by self heating to DTmax. Because the heat flow in

the silicon and interconnect material and the chip cooling

are well known, the maximum allowable electrical power

dissipation Pmax per volume can be calculated from

DTmax. Likewise, the maximum allowed Ieff,max can be

determined for each interconnect layer (of known

thickness) depending on the electrical effective width weff.

Ieff is also known as Irms (Iroot-mean-square) because of the

formula to calculate:

I
eff
¼ I

rms
¼

ffi
ðswitchingFactor=t

cycle
�
Z

i
2ðtÞdðtÞÞ

s
: ð1Þ

Design guidelines tabulate the maximum allowed

Irms,max values per layer with a dependency formula on

the width.

Each global signal interconnect was analyzed to find

Irms,max violations by performing automated SPICE

analyses. 3DX extraction provided a PDM database, Cþþ
classes, and methods to access the parasitic data and

netlist information. With these methods, a SPICE netlist

was generated from the PDM for each signal net. The

netlist contained an RC representation of the global

signal interconnect. Each wire segment and via was

represented by a T model consisting of the elements R/2,

C, and R/2 [Figure 11(a)].

From a database, the layer, width, and coordinates

were retrieved for each capacitance of a wire segment or

via. Industry-standard SPICE-measured Irms and Iaverage
statements, together with a normalized ratio Irms/Irms,max,

were added for each resistor in the netlist. The Irms,max

was calculated from the width of the wire segment or via

when the netlist was completed. Capacitance loads

representing macro or book input pin capacitances and a

voltage source with a trapezoidal pulse representing a

driving circuit with a certain voltage swing, cycle time,

switching factor, and slew were also added to the netlist.

Switching factors were also determined from extracting

the timing phase of the signal from EinsTimer

[Figure 11(b)]. The electrical values such as voltage swing,

driver slews, resistors, and capacitances were based on

fast process parameters representing the worst case for

Irms.

The netlist contained only linear elements, which made

the automated SPICE analysis very rapid. Nets that had a

total net capacitance below a project-dependent defined

threshold value were ignored because they could not

cause excessive self heating. In order to eliminate the dc

components of the currents, multiple cycles were analyzed

and the Irms measurements were read out in the last cycle.

The results from the SPICE measure statements were

automatically inspected for a ratio .1.

Violations with a ratio .1 were reported along with

Irms, Irms,max, net name, cycle time, switching factor,

driver slew, voltage swing, layer, width, and coordinates.

A marker file to locate the failing segments easily in a

layout editor was also produced. For each failing net, an

Irms report of all wire segments and vias was written.

Waveforms and results for each wire segment could also

be provided.

Several options were available to eliminate existing Irms

violations. The individual options listed below could be

combined:

� Widen the metal or add more vias.
� Choose a thicker metal layer.
� Split the net to reduce capacitive load and buffer the

net.

Signal electromigration analysis within macro designs

Given the vast circuit styles and wiring topological

complexities, the signal EM analysis within the macro

required not only circuit simulation to find problematic

failure connections but also analysis of circuit-logic state.

This analysis sensitizes the circuit configuration to enable

the maximum charge or discharge current so that failing

wiring connections or vias can be located. With these

requirements, the IBM static timing tool, EinsTLT,

Figure 11

(a) A T model consisting of two resistors of equal value with

capacitance in the middle is commonly used to model a wire. (b)

An electromigration measurement scheme. Currents are measured

at each node in the RC network in which a single gate drives two

gates.

R/2 R/2

C

(a)

(b)

input

output1

output2

capload1

capload2

Measure Irms

R. BERRIDGE ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

704

would integrate signal EM analysis within the circuit

design analyses. Also within the macro-based analysis

application, the transistor interconnections that assemble

logical gates can have both unidirectional and

bidirectional currents that must both be measured against

technology guidelines.

In order to allow for unique identification of the

interconnect wiring and vias, the macro parasitic

extraction tool, IBM Erie (macro extraction tool),

includes specific information for the analysis of signal EM

and provides information so that the EM analysis failures

could be located within the physical layouts to correct the

design. The x- and y-axes coordinates, the metal or via

layer name, and the effective resistance of each individual

wire segment and via were to be included so that the

failing structure could be identified during the analysis.

As in static timing analysis, the EinsTLT application

utilized similar methods in developing each network

structure that was to be passed to the embedded circuit

simulator. In this case, current measurements were

returned on wiring and via components for comparison

to the technology guidelines. During a timing analysis

accomplished by EinsTLT, a conditioned cycle time of

the circuit under test must be applied by accounting for

cycle times during current measurements so that signal

EM can be determined. Additionally, Idc and Irms currents

are also dependent on the switching behaviors of the

signals propagating through the circuits, which are also

included during the analysis with the results reduced by a

switching approximation for each signal.

7. Power and performance analysis

Introduction

Analysis of power for the POWER6 chip presented

several new challenges. In addition to chip size and

complexity, multiple system applications of the chip

existed with different power constraints and performance

requirements. Therefore, power and performance had to

be modeled with sensitivities to voltage, frequency, and

temperature while preserving variations in the

manufacturing process. In addition, the multiple power

supply voltages drove the need to estimate not only total

power but also power by voltage rail so that system power

supply requirements could be determined early in the chip

design cycle.

Leakage power of the 65-nm devices was a much more

significant fraction of total chip power than in previous

technologies. Circuit designs had to include additional

devices at differing threshold voltages to permit leakage/

performance optimization. Consequently, acquisition of

design data that affects leakage power had to be

organized by device type, and the leakage models had to

be implemented for each unique type. Design techniques

for mitigating ac power dissipation included low-power

latch operating modes. Estimates were required for each

unique mode as well as counts for latches not only by

power level but by operating mode.

Power estimation methodology

Power dissipation was modeled in two components: ac

power and dc power.

AC power

AC power was estimated prior to completion of

schematics or VHDL by using a latch count and area-

based approach. The power dissipation that results from

simply clocking the latches of a typical macro is a

significant portion of the total macro power.

Rather than require a circuit simulation to be

performed on each macro, simulations were done on each

latch type to determine its power dissipation at a set

frequency and voltage with its data inputs held constant.

Latch counts for each latch type were estimated for each

macro in the design. Actual latch counts were extracted

from design data later in the design cycle. The power

dissipation that resulted from clocking the macro with all

its inputs static could then be accurately estimated by

simply multiplying its latch counts by the power per latch.

The resulting latch power was then scaled to application

voltage and frequency. Additional macro power

dissipation resulted when its inputs were not static.

Simulation results from previous chip designs were

analyzed to determine the incremental macro power that

was a function of input data switching activity. This

incremental power (data power) was found to correlate

well to macro area. While data power from an individual

macro could vary significantly from what would be

predicted on the basis of its area, the total data power of a

large number of macros could be accurately estimated

from its area and application conditions. Additionally,

the data power component of a macro with typical input

switching activity is relatively small compared with its

latch power. The result of this work was a closed-form

model of the ac power of each macro as a function of its

latch count, area, and application voltage and frequency.

DC power

DC power is the component of total power dissipation

that is independent of frequency. It consists of parasitic

device currents (subthreshold and gate tunneling current)

and resistive power dissipation from I/O termination or

other resistive networks across the voltage rails.

Parasitic device currents (leakage)

Subthreshold current is also known as channel leakage or

Ioff. Ioff is a function of Weff, Lpoly (or device length), Vdd,

and Tj.

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 R. BERRIDGE ET AL.

705

Ioff equations provide a normalized A/m gate width

that is used with gate width data to calculate channel

leakage at any application voltage, temperature, or

manufacturing process line center.

In addition to subthreshold or channel leakage current,

devices suffer from gate tunneling current. Unlike Ioff, the

current path for Igate is from the device gate to its drain or

source and is significant when the device is on. For Igate
calculations, 50% of the devices are assumed to be on or

to have Vdd as their VGS or VGD. Fifty percent of the

gates are assumed to be in the off state (VGS ¼ 0 V,

VGD ¼ Vdd).

I/O macros employed resistive termination. These were

simply modeled as resistors with power proportional to

the square of the voltage across them.

Performance estimation methodology

Both chip fmax and power are strong, nonlinear functions

of Vdd. In addition to estimating power at a specified

voltage, for the POWER6 processor, it became necessary

to estimate power at a specified performance level (fmax).
Performance estimates were based on the assumption that

chip delay paths consist of a silicon delay portion that

scales with voltage, temperature, and process just like a

process-sensitive ring oscillator (PSRO) and a wire delay

portion that is relatively insensitive to Vdd.

Simulations were performed on various PSRO circuits,

and regression analysis was performed on simulation

results to get a closed-form model of PSRO as a function

of Vdd, Tj, process variables, and device type used in the

PSRO. The worst-case delay path varies with application

conditions. As Vdd is raised, the silicon portion of delay

paths becomes a smaller fraction of the total delay, while

the wire delay portion remains relatively fixed. Therefore,

multiple delay paths were modeled that represent the

extremes of wire delay versus silicon content for paths

dominated by high-VT device and nominal-VT devices. A

function to calculate fmax in terms of application

conditions and process parameters resulted.

Data acquisition and storage

During the design process, VHDL and schematic data

became available for latch count and area estimates.

Software was developed to exploit existing tools to

extract the design data and populate it into a structured

query language (SQL) database. Use of a SQL database

permitted use of an ‘‘off-the-shelf’’ spreadsheet and chart-

making tools to access the data, create trend graphs,

model power, and minimize required tool development

resources.

Spreadsheet generation

Spreadsheets are useful for interactive analysis and

graphing. However, as model complexity increases, they

become error prone and difficult to understand by users

other than their author. It is easier to read and

understand well-commented procedural code than to

examine spreadsheet cells if one is experienced in the

procedural language used for the model.

Experience shows that the biggest source of power

estimate inaccuracy was frequent mistakes in spreadsheet

implementations. Rather than develop code in the

spreadsheet itself, procedural code was used to create the

spreadsheet. The same code was used to generate

spreadsheets for each of the supported processors so that

a consistent model was used for every chip power model

and maintenance resource was minimized.

A common template spreadsheet was distributed with

menus extended to allow generation of project-specific

spreadsheets. In addition, the generated spreadsheets did

not contain static design data, but they could be refreshed

with a simple mouse click so that the latest (or any

previous release) design data would be used.

Circuit-limited yield

The closed-form models developed for power and

performance estimation made it feasible to perform chip-

level Monte Carlo power and performance analysis.

Based on manufacturing test data, process parameters

were modeled as statistical distributions. Aggregating

these results allowed insight into circuit-limited yield

(CLY), or wafer yields. Design gate width and latch count

data were aggregated by domains. A unique set of

voltage, temperature, and device types constituted a

leakage domain. AC domains consisted of each unique

voltage and asynchronous frequency, latch type, and

macro type (RLM versus custom).

Random variables were generated for each simulation

sample. From these random variables, variance about

median values was calculated for process variables.

Additional variation was added to model contribution

from unknown sources to ensure that power/

performance variability was consistent with measured

hardware data.

A graphical user interface (GUI) was developed for

the tool to allow specification of either a power or a

performance constraint. The CLY tool would initiate a

Monte Carlo analysis in which each would perform a

search algorithm to determine the maximum Vdd that

could be used within a power constraint. This Vdd value

was then used to determine the fmax given the process

and random variables of a specific sample. The fmax and

the values of all varying parameters were saved so that

results and random data used could be later plotted as

histograms and cumulative probability distributions.

Similarly, an fmax constraint could be specified and the

tool would find the minimum Vdd required to meet that

R. BERRIDGE ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

706

constraint. Power was then calculated at the fmax

constraint and associated data was saved for analysis.

Model-to-hardware correlation

The power, performance, and CLY estimation

mechanisms used in the POWER6 microprocessor

showed good correlation to actual hardware results. In

fact, correlation was significantly improved compared

with previous programs in which SPICE simulation-

based methods of power estimation, which require

significant engineering resources and computation time,

were used. AC power as measured in W/GHz*V2

correlated to estimates within 10% across a range of

operating conditions [Figure 12(a)]. Similarly, dc power

and fmax showed excellent correlation across the process

[Figures 12(b) and 12(c)]. These correlations enabled

accurate prediction of product frequency and ship yields;

this was significant to the timely delivery of systems

meeting performance goals.

8. RLM design

As described above, the hierarchical design of the chip

created units that must be designed to fit into the chip.

The unit design team must understand function, area,

timing, and power constraints and decide the best mix of

RLMs and custom macros. Control logic is likely to be

changed as design features are added or removed. As unit

and chip verification progresses, logic should be

implemented as an RLM and remanded to tools for

implementation. If related logic is properly grouped into

reasonably sized RLMs, the implementation tools do

about as well as a human designer would, although only if

provided good input, for example, on timing constraints,

RLM pin placement, and reasonable amounts of logic in

each cone. This division of the unit into RLMs improves

turnaround time because each RLM can be built on a

collection of background processors. Generally, the entire

nest unit could be run in a few days, while other core unit

RLMs may take as long as a few weeks, for example,

because of interaction with routing, noise, and EM. The

cost of creating and maintaining this hierarchy must be

paid upfront.

The unit design teams were staffed with logic designers

that owned the function of the RLMs. RLM builders

managed the RLMs through the implementation process.

Unit timing teams managed the assertion and validation

process, and a unit integrator owned and managed the

interaction of all the unit RLMs and custom macros as

well as the integration into the chip. Often, a single

person could serve many of these roles. The most

successful units managed their designs with budgets for

area, timing, and power that did not vary much for each

implementation. This stability led to the discovery of

design-level problems sooner and resulted in much more

predictable implementation runs.

RLM implementation

Once the unit structure was designed, each RLM had to

be implemented. IBM tools that worked in a unified

framework, such as ChipBench or IBM infrastructure

(Nutshell), were used, which allowed incremental timing

analysis (EinsTimer), while the design was being

elaborated and optimized using the IBM BooleDozer*

application and IBM placement-driven synthesis (PDS).

A standard sequence of heuristic and metric-based

Figure 12

POWER6 microprocessor (a) actual (modeled) vs. measured

(hardware) ac power; (b) IddQ vs. inverter delay from model and

hardware [(a) and (b) republished with permission from [16];

©2007 IEEE]; (c) fmax vs. inverter delay for model and hardware.

0.95 1.1 1.3
Voltage (V)

(a)

Modeled

ac power

(W/GHz*V2)

Measured

ac power

(W/GHz*V2)

0

2

4

6

8

10

12

14

16

18

8.0 8.5 9.0 9.5 10.0
Inverter delay (ps)

(b)

Empirical data

Model

7.0 7.5 8.0 8.5 9.0 9.5 10.0

Inverter delay (ps)

(c)

Modeled fmax

Empirical fmax

4.0

4.2

4.4

4.6

4.8

5.0

5.2

5.4

5.6

5.8

6.0

0

40

80

120

160

200

W
/G

H
z*

V
2

.3
I d

d
Q

(W

)
F

re
q

u
en

cy

(G
H

z)

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 R. BERRIDGE ET AL.

707

optimizations was developed and tuned for a particular

technology at a particular cycle time and was expected to

work well for a very high percentage (e.g., 90%) of the

RLMs it was given. This tuning was generally in the form

of setting parameters (or knobs) to activate and deactivate

specific functions and algorithms, selecting the proper

technology-standard cells for each RLM on the basis of

its cycle-time target (nest cycle time is twice that of the

core), and setting thresholds and cost multipliers to

influence the optimizations. Unique technology and chip

constraints drove the development of new code and

enhancement of base system code. The resistance of the

wires did not scale down as fast as the silicon delay

improved, so RC was a significant challenge.

The flow used for IBM server processors differed from

the PDS flow used by ASIC (application-specific

integrated circuit) chips under the IBM flow manager tool

(The Guide). The chip hierarchy generally created smaller

RLMs that in turn allowed higher effort on each RLM

without creating unusually long running jobs. The

processor flow runs from the high-level register transfer

language (RTL) and includes the technology-independent

synthesis (using the BooleDozer application) flowing

directly into the PDS and hence was called the IBM

PDSRTL. The PDSRTL follows the typical sequence of

heuristics used in a PDS flow:

1. Read the input RTL design, delete unconnected

logic, and analyze and remove redundant logic.

2. Restructure the design in order to reduce logic

complexity. This is one of the major set parameters

provided to the RLM builder that affects the results.

They range from ‘‘do nothing’’ to completely

throwing away the RTL constructs by creating a

sum-of-products implementation and then factoring

that out to implement the cones of logic.

3. Map to technology standard cells. Perform initial

optimizations to bring the logic cones into

compliance with technology constraints (e.g., fanout

optimization and repower for loads).

4. Perform an initial placement of all the logic to

minimize projected total wire length (no timing

considered). This ignores clocking and scan

constraints. It allows the use of a Steiner-based

router that is quite fast and yet differentiates

individual wires on the basis of their connection to

other logic and RLM I/Os.

5. Begin timing and electrical correction by cloning and

buffering logic and restructuring logic cones on the

basis of timing.

6. Insert the clocking network for the RLM. The

assumption is that the latches have been distributed

and are now ‘‘near’’ the logic they interact with.

7. Timing and area are optimized. A significant amount

of CPU (central processing unit) time is spent here as

various options on restructuring the logic cones, e.g.,

cloning/repowering/buffering the logic for speed, are

evaluated and either selected or rejected. Any

constraints implied by the chip circuit lead are met.

8. Electrical violations (e.g., signal slew limits and RC

problems) are fixed.

In the POWER6 processor design, the RLM build

process began by importing the synthesized, placed VIM

into the Cadence framework as an autoLayout cellview.

Once the data was in the Cadence framework, it is floor-

planned using various techniques including instantiating

the cover cell into the RLM that contains the blockage

definition for restricting the placement of routing data.

Another important step in floor planning the RLM is to

define the placement and routing grids using the

technology-defined requirements. A typical RLM had

routing grids defined for the first four layers of metal,

with very congested RLMs having the ability to use up to

the first six layers after agreements with the unit

integrator. For RLM engineering change orders (ECOs),

the design was then merged with the previously routed

design. It was then taken into the Cadence placement

tool, QPlace, to place any new logic EC books where

previously there were gate array cells from the initial

build. For an initial build, the design was then filled, or

refilled for an ECO, with decoupling capacity cells

(dcap)10 and gate array cells for performing any future

ECOs.

The next phase of building an RLM is to prepare the

design for routing. Large bar pins were used, 0.3 lm3 the

height of the macro, to denote the allowable locations on

the macro for which the router was able to connect the

global clock pin on each LCB. The unused portion of the

large bar pins was eliminated from the final design during

a post-processing step. Next, the clock nets connecting

each LCB to the individual latches were prerouted with a

3X-wide wire adhering to a 0þ0 pattern, with the origin

and length of each set of preroutes determined by the

placement of the LCB and latches. This step was

successful at reducing any clock skew from the LCBs to

the latches. In addition, all timing-constrained nets,

including the clock nets, would be annotated with either

wide wire codes or specific net weights in order to prevent

the wires from becoming scenic when routed. The

remaining signal pins and internal nets were routed using

the Cadence routing tool WRoute. By default, all RLMs

are routed with 100% redundant vias, which greatly

improved yield results for the design. Fewer than 5% of

designs had to use a combination of redundant and

10Decoupling capacity is used on power grids to minimize voltage fluctuations.

R. BERRIDGE ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

708

single-cut vias. The fully routed design was then post-

processed using various techniques to generate a DRC

layout cell view. All floor-planning data was removed

from the final layout, as well as any unused portions of

the clock preroutes and the large bar pins. This final

layout was then taken through the design-checking tools

in the same manner as a custom-designed macro. If any

macro timing issues were encountered during analysis of

the final layout, the design could be updated by defining

additional wide wire codes or net weight on the specific

nets, which were sent back through WRoute for

incremental routing.

From the perspective of the unit design team, the use of

these tools for increased productivity was critical as the

design was evolving. The weekly churn due to timing

problems, noise problems, logic design constraints,

electrical checking violations, changes due to verification,

addition or removal of function required the RLM

implementation flow to provide highly repeatable results

that were generally correct by construction. Experience

with the tools led to a design of the logic the way the tools

expected and the results were good enough to change

many macros from custom designs to RLMs. This entire

process of using complex tools required a simple interface

that could be managed with minimal designer effort. Just

as important was the flexibility of the tools to handle

specific cases of exception for each macro consistently.

9. Multisite microprocessor auditing and data
management methodology

Global project repository

The physical design environment included Cadence

integrated with a multitude of point tools. The following

auditing and data management methodology was the

result of having to find a way to allow multiple sites to

work together to produce a design so large that the

required people were not available at any one site. The

designers were concerned with having the critical data

and tools they needed at their site. When one site went

down, it was imperative that a significant number of

designers at every other site could continue to work. This

dictated that the design data and tools that were required

by most of the designers at a site had to physically exist at

that site. This requirement was fulfilled by locating pieces

of the design at the sites that accessed them the most

(installing soft links to the data from the other sites) and

by shadowing commonly used design data, tools, and

control files between the sites. Therefore, each site project

repository appeared to be nearly identical.

The logic is stored in a concurrent versions system

(CVS) repository specific to one site (other sites link to

this repository) and the rest of the design data was stored

in ICLs. IBM CAD is an internal electronic DA (EDA)

tool that allows the storage of various configurations of

the same Cadence library. These libraries were used to

manage the content of most circuit and integration data

(e.g., Cadence views, timing, and VIMs) for the POWER6

microprocessor and were mastered at the site where most

of the designers working on that particular library were

located. If particular libraries were read extensively at a

site where the master library was not located, those

libraries (or a subset of their levels) were shadowed to

that site.

Each level in an ICL can contain only one version of a

particular cellView (each level looks like a standard

Cadence library), so levels were used to create different

configurations of the data contained within the libraries.

These configurations are called ICL releases and can be

BOUND (i.e., contain an ICL level and its dependent

libraries as well as their level) or UNBOUND (i.e., include

a reference to a particular BOUND ICL release). All ICL

releases constitute a complete configuration of a

particular ICL level. All ICL releases (represented by

icl.lib files) are stored under the iclCommon level of the

library. All design work and auditing was done on the

basis of an ICL release. This allowed for asynchronous

drops for the various libraries so one unit was not forced

to wait for another to catch up. Table 4 shows the

required ICL levels for an official POWER6

microprocessor library.

Bound configurations

Each ICL level (except for iclCommon) has one BOUND

icl.lib file kept under the iclCommon level of the library. It

is forever tied to that particular ICL level, and it must use

this level as its name (level.lib).

The ‘‘librarian’’ must include the ICL level and all of its

dependent libraries (and their level) in this file. The path

to this BOUND icl.lib file can be retrieved by calling the

script eifGetIclLib. The advantage of this is that if no

icl.lib file was stored for a particular level of the library,

the librarian can create a standard one and return a path

to it.

For example, the standard icl.lib file created for a

project circuit library includes only two lines: one to

include the shadowed common reference libraries and one

to include the current level of the circuit library. For an

integration library, the standard icl.lib file includes the

reference libraries, the integration library, and all the

circuit libraries under the unit for that integration library.

Unbound configurations

An UNBOUND configuration is defined by an icl.lib file

that does not have an existing ICL level in its name. These

UNBOUND icl.lib files are used to tell parents of the

library (such as the core or chip unit) or users of the

library [such as various tool owners: timing, verity, noise,

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 R. BERRIDGE ET AL.

709

design for testability (DFT), and audit] which level of the

library should be used for a particular task.

The unit (typically the unit integrator) is responsible

for ensuring that the various UNBOUND icl.lib files are

up-to-date. After an UNBOUND icl.lib file has been

created for a unit, it can be updated by using a special

tool called setLibPath or by checking it out and editing it

from the ICL browser.

The audit system gives an example of how these

UNBOUND configurations can be used. The nightly

audit cronjobs searches all of the project libraries for

UNBOUND configurations that begin with ‘‘audit_’’

(e.g., audit_masterdd0, audit_pdd1_1, and

audit_p1_ec012). All of these audit_*.lib files will be

opened and audit will be run on the release given inside

each of them (provided it belongs to the current project).

One course of action strongly encouraged for everyone

on the project is to use the setLibPath (IBM library-path-

setting tool) in the Cadence environment. SetLibPath

ensures that all designers pick up complete configurations

(BOUND and UNBOUND). This is critical to picking up

all appropriate dependencies. Just having an ICL level in

your personal icl.lib and then adding dependencies

manually could cause one to be out of sync with the rest

of the designers using that particular level. This could

cause incorrect VIM generation, tool failure, incorrect

audit results, or DRC errors, for example.

Auditing

As mentioned in the section on the global project

repository, above, auditing is done on a per-ICL release

basis. All of our physical design-checking tools (e.g.,

EinsTLT, verity, DRC, and LVS) are integrated into our

audit system. The IBM design auditing tool GPA allows

one to see the result of these audit runs. In addition to the

audit logs, GPA also requires that a program be run

nightly in order to generate information about the

Cadence hierarchy (releaseAudit). This system is based on

the one used for the POWER4 microprocessor. A number

of key modifications were required for the POWER6

microprocessor:

� Every time an auditable check is run with the audit

option turned on, an audit log is created inside the

ICL release being audited. This is done by having the

auditable check call the gpaLogSuccess (IBM gpa

subprogram) program.
� One of the innovations added for the POWER6

microprocessor is the P-grade, which conveys when an

auditable check was passed with a relaxed set of

requirements. While no macro should be finally

released with a P-grade, it allows the integration team

to determine whether certain minimal checks that are

required to allow successful practice integration runs

were passed.
� Allow grades for macros to be transferred from one

ICL release to another during the promotion step

used to initialize a new ICL release from an old one.

This enables checking results to be transferred to

another microprocessor project along with the design

data for various macros or an entire library. This can

be done with the confidence that the audit will pick up

any problems introduced by different project-specific

requirements.
� Creation of an IBM library view query tool that is

composed of scripts that are used to gather the file

paths of different data types for a complete

configuration. These include eifGenPath (returns the

search path for an ICL release for a specified

viewType), eifGetIclLib (returns the official icl.lib file

for the ICL release specified), and eifGetIclLibList

(returns a list of all the ICLs and levels that make up

the specified ICL release).

10. Concluding remarks

The POWER6 microprocessor physical design was a

tremendous feat to achieve on many fronts. The

Table 4 Levels that each POWER6 IBM CAD library should contain.

Level name Audit? Content

workLevel Yes Management of content responsibility of the designer. Usually day-to-day work occurs

directly in this level. On sites where the master library is not local, working in private

libraries is encouraged. This level should be promoted into the masterLevel instead of

being promoted directly into a release level.

iclCommon No This level contains various icl.lib files that are used to control ICL resolution for various

timing, noise, logic, and physical configurations.

masterLevel Yes The authTable entry for this level is set to not editable; this permits asynchronous

promotion by the circuit designer and the integrator. The circuit designer promotes into

master (using a direct promote from workLevel, or a hierarchical copy from a user

library) and the integrator promotes out of master into populated numbered levels.

R. BERRIDGE ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

710

aggressive FO4 target and the power restrictions, coupled

with technology and logistical challenges, drove the

physical design and the many design methodology

advancements described in this paper. The design

methodology used for the POWER6 processor has set the

stage for future approaches to microprocessor design.

Advances in technology, as well as design point and

logistical challenges, clearly indicate that more design

process robustness, flexibility, and early learning are

required to deliver competitive microprocessor designs to

the marketplace in the future.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark, service mark, or registered trademark of Microsoft
Corporation or Sony Computer Entertainment, Inc., in the United
States, other countries, or both.

References
1. E. Leobandung, E. Nayakama, H. Mocuta, D. Miyamoto, K.

Angyal, M. Meer, H. V. McStay, et al., ‘‘High Performance
65 nm SOI Technology with Dual Stress Liner and Low
Capacitance SRAM Cell,’’ 2005 Symposium on VLSI
Technology, Digest of Technical Papers, June 14–16, 2005, pp.
126–127.

2. J. D. Warnock, J. M. Keaty, J. Petrovick, J. G. Clabes, C. J.
Kircher, B. L. Krauter, P. J. Restle, B. A. Zoric, and C. J.
Anderson, ‘‘The Circuit and Physical Design of the POWER4
Microprocessor,’’ IBM J. Res. & Dev. 46, No. 1, pp. 27–51
(2002).

3. B. W. Curran, Y. H. Chan, P. T. Wu, P. J. Camporese, G. A.
Northrop, R. F. Hatch, L. B. Lacey, J. P. Eckhardt, D. T. Hui,
and H. H. Smith, ‘‘IBM eServer z900 High-Frequency
Microprocessor Technology, Circuits, and Design
Methodology,’’ IBM J. Res. & Dev. 46, No. 4/5, pp. 631–644
(2002).

4. V. Rao, J. Soreff, T. Brodnax, and R. Mains, ‘‘EinsTLT:
Transistor Level Timing with EinsTimer,’’ Proceedings of the
International Workshop on Timing Issues (TAU) in the
Specification and Synthesis of Digital Systems, March 8–9,
1999, pp. 1–6.

5. A. R. Conn, K. Scheinberg, and Ph. L. Toint, ‘‘A Derivative
Free Optimization Algorithm in Practice,’’ Proceedings of the
7th AIAA/USAF/NASA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization, St. Louis, MO,
1998.

6. P. J. Camporese, A. Deutsch, T. G. McNamara, P. Restle, and
D. Webber, ‘‘X-Y Grid Tree Tuning Method,’’ U.S. Patent
No. 6,205,571, March 20, 2001.

7. P. J. Restle, R. L. Franch, N. K. Norman, W. V. Huott, T. M.
Skergan, S. C. Wilson, N. S. Schwartz, and J. G. Clabes,
‘‘Timing Uncertainty Measurements on the POWER5
Microprocessor,’’ 2004 IEEE International Solid-States
Circuits Conference, Digest of Technical Papers, February
15–19, 2004, pp. 354–355.

8. M. S. Floyd, S. Ghiasi, T. W. Keller, K. Rajamani, F. L.
Rawson, J. C. Rubio, and M. S. Ware, ‘‘System Power
Management Support in the IBM POWER6 Microprocessor,’’
IBM J. Res. & Dev. 51, No. 6, pp. 733–746 (2007, this issue).

9. S. R. Nassif and J. N. Kozhaya, ‘‘Fast Power Grid
Simulation,’’ Proceedings of the 37th Design Automation
Conference, 2000, pp. 156–161.

10. J. S. Neely, H. H. Chen, S. G. Walker, J. Venuto, and T. J.
Bucelot, ‘‘CPAM: A Common Power Analysis Methodology
for High-Performance VLSI Design,’’ IEEE Conference on

Electrical Performance of Electronic Packaging, Scottsdale,
AZ, October 23–25, 2000, pp. 303–306.

11. R. M. Averill III, K. G. Barkley, M. A. Bowen, P. J.
Camporese, A. H. Dansky, R. F. Hatch, D. E. Hoffman, et al.,
‘‘Chip Integration Methodology for the IBM S/390 G5 and G6
Custom Microprocessors,’’ IBM J. Res. & Dev. 43, No. 5/6,
pp. 681–706 (1999).

12. H. Smith, A. Deutsch, S. Mehrotra, D. Widiger, M. Bowen, A.
Dansky, G. Kopcsay, and B. Krauter, ‘‘R(f)L(f)C Coupled
Noise Evaluation of an S/390 Microprocessor Chip,’’ IEEE
Conference on Custom Integrated Circuits, San Diego, May
2001, pp. 237–240.

13. A. Deutsch, H. H. Smith, B. J. Rubin, B. L. Krauter, and
G. V. Kopcsay, ‘‘New Methodology for Combined Simulation
of Delta-INoise Interaction with Interconnect Noise for Wide,
On-Chip Data-Buses Using Lossy Transmission-Line Power
Blocks,’’ IEEE Transactions on Advanced Packaging, Vol. 29,
February 2006, pp. 11–20.

14. K. L. Shepard and V. Narayanan, ‘‘Noise in Deep Submicron
Digital Design,’’ 1996 International Conference on Computer-
Aided Design (ICCAD 1996), Digest of Technical Papers, 1996,
pp. 524–531.

15. J. R. Black, ‘‘Electromigration—A Brief Survey and Some
Recent Results,’’ IEEE Transactions on Electron Devices, Vol.
16, 1969, pp. 338–347.

16. J. Friedrich, B. McCredie, N. James, B. Huott, B. Curran, E.
Fluhr, G. Mittal, et al., ‘‘Design of the POWER6
Microprocessor,’’ Proceedings of the International Solid-State
Circuits Conference (ISSCC), Digest of Technical Papers, San
Francisco, CA, February 11–15, 2007, pp. 96–97.

Received February 1, 2007; accepted for publication

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 R. BERRIDGE ET AL.

711

September 18, 2007; Internet publication November 1, 2007

Rex Berridge IBM Systems and Technology Group,
11500 Burnet Road, Austin, Texas 77850 (rexb@us.ibm.com). Mr.
Berridge is a Senior Engineering Manager in the integration and
methodology department. He received a B.S. degree in electrical
engineering from Texas A&M University in 1999. He subsequently
joined IBM, where he has worked on transistor-level timing. In
2005 he received an IBM Outstanding Innovation Award for his
work on POWER5 transistor-level timing.

Robert M. Averill III IBM Systems and Technology Group,
2455 South Road, Poughkeepsie, New York 12601
(averillr@us.ibm.com). Mr. Averill is a Senior Technical Staff
Member in the iSeries, pSeries, and zSeries* hardware development
laboratory in Poughkeepsie, New York. In 1983 he joined IBM at
the East Fishkill facility, where he developed advanced VLSI test
equipment. He joined the advanced complementary metal-oxide
semiconductor (CMOS) microprocessor group in Poughkeepsie in
1994 as a Circuit Designer and is currently the Chip Integration
Leader for all iSeries, pSeries, and zSeries microprocessors. Mr.
Averill received a B.S.E.E. degree from Northwestern University
in 1983 and an M.S.E.E. degree from Syracuse University in
1990. He has received three IBM Outstanding Technical
Achievement Awards, one IBM Outstanding Innovation Award,
and one IBM Technical Corporate Award for his work in chip
integration.

Arnold E. Barish IBM Systems and Technology Group,
2455 South Road, Poughkeepsie, New York 12601
(barish@us.ibm.com). Mr. Barish is a Senior Technical Staff
Member working in the areas of advanced technology
development, ground rules, physical verification, and library
support. He received a B.S.E.E. degree from the City College of
New York in 1968 and an M.S.E.E. and M.S.C.I.S. from Syracuse
University in 1971 and 1977, respectively. He joined IBM in 1968
working on circuit design and I/O wiring rules and later on
technology development, ground rules, physical verification, and
library applications. Mr. Barish holds several patents and has
received a division award for his work on H2 library development,
as well as three Outstanding Technical Achievement Awards for his
work on H5, POWER4, and POWER5 processor library
development.

Michael A. Bowen IBM Systems and Technology Group,
2455 South Road, Poughkeepsie, New York 12601
(MichaelBowen@us.ibm.com). Mr. Bowen is a Senior Programmer
in the iSeries, pSeries, and zSeries hardware development
laboratory in Poughkeepsie, New York. In 1989, he joined IBM at
the Kingston facility, where he worked with a team developing
timing-driven placement and wiring methodologies. He joined the
microprocessor team in Austin, Texas, in 1994 and continued to
develop integration tools and methodologies to support the IBM
RS/6000* and chips developed in collaboration with Motorola. He
joined the advanced CMOS microprocessor group in Poughkeepsie
in 1997 as a tool developer and is currently the Tools/Methodology
Leader for zSeries systems. Mr. Bowen received a B.A. in math and
computer science from the State University of New York at
Potsdam in 1988 and an M.S. in computer science from Rensselaer
Polytechnic Institute in 1992. He has received two Outstanding
Technical Achievement and two Outstanding Contribution
Awards for his work in chip integration. He also has four patents
in various physical design processes.

Peter J. Camporese IBM Systems and Technology Group,
2455 South Road, Poughkeepsie, New York 12601
(pcamp@us.ibm.com). Mr. Camporese is a Senior Technical Staff
Member at the IBM development laboratory, working on
microprocessor physical architecture and integration. Mr.
Camporese received a B.S. degree in electrical engineering from the
Polytechnic University in 1988 and an M.S. degree in computer
engineering from Syracuse University. He joined the IBM data
systems division in Poughkeepsie, New York, in 1988, where he has
worked on system performance, circuit design, physical design, and
chip integration. He was the Technical Team Leader and Chief
Physical Design Architect for the G4 and G7 CMOS zSeries
microprocessors. He holds 12 U.S. patents and is a coauthor of
several papers on high-speed microprocessor design. He has
received an IBM Corporate Award for IBM eServer z900
microprocessor development and several IBM Outstanding
Technical Achievement and Outstanding Innovation Awards for
microprocessor physical design, integration, and tools
development. He currently manages the physical design and
integration development efforts for future IBM eServer
microprocessors.

Jack DiLullo IBM Systems and Technology Group,
11400 Burnett Road, Austin, Texas 78758 (dilullo@us.ibm.com).
Mr. DiLullo is a Senior Engineer working on the integration and
timing team in Austin, Texas. He received a B.S. degree in electrical
engineering at Polytechnic Institute of New York in 1983 and
joined IBM Austin. There, Mr. DiLullo worked in the design
verification group involved in timing verification and signoff for
mainframe designs. He received an M.S. degree in computer
engineering from Syracuse University in 1988 and later joined IBM
Boca Raton in 1994 working on IBM OS/2* operating system
performance. After moving to Austin in 1996, Mr. DiLullo joined
IBM EDA as an application engineer in support of IBM CMOS
microprocessor designs before becoming a member of the
POWER4 team working on timing methodology development and
timing closure. Currently, Mr. DiLullo specializes in global timing
methodology for the pSeries, zSeries, and gaming chips, as well as
pSeries global chip timing closure.

Peter E. Dudley IBM Systems and Technology Group,
2455 South Road, Poughkeepsie, New York 12601
(pdudley@us.ibm.com). Mr. Dudley is an Advisory Engineer in the
integration and methodology department. He received a B.S.
degree in computer science and an M.S. degree in electrical
engineering in 1991 and 1995, respectively, from the University of
Vermont in Burlington. In 1994, he joined IBM at its Burlington,
Vermont, facility and worked in the PowerPC* processor hardware
development laboratory developing tools and methodologies
concentrating on the data management and auditing of advanced
microprocessor designs. In 1996, he joined the POWER4 processor
hardware development laboratory in Fishkill and then relocated to
the IBM site in Poughkeepsie. He received Outstanding Technical
Achievement Awards for his audit methodology work and for his
work on the POWER5 processor tools and methodology. He is the
primary owner of a patent on circuit delay abstraction and is
author or coauthor of three technical papers. He is currently
Infrastructure Tools Leader of all IBM server and games
microprocessor development projects.

Joachim Keinert IBM Systems and Technology Group,
Boeblingen Development Laboratory, Schoenaicherstrasse 220,
71032 Boeblingen, Germany (keinert@de.ibm.com). Mr. Keinert
received an M.S. degree in electrical engineering from the Technical
University of Stuttgart, Germany, in 1980. He joined IBM in 1979

R. BERRIDGE ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

712

to work on bipolar circuit design. In 1982, he started to work on
CMOS circuit tool development and chip design methodologies.
Since then, he has been involved in the development of design tools
for all IBM CMOS mainframe processors. His work also covers
innovative technologies such as FinFETs and he holds several
patents in various areas. Currently, Mr. Keinert is a focal point for
circuit design tools for future IBM eServer processors.

David W. Lewis IBM Systems and Technology Group,
2455 South Road, Poughkeepsie, New York 12601
(dlewis@us.ibm.com).Mr. Lewis is a Senior Engineer in the iSeries,
pSeries, and zSeries hardware development laboratory in
Poughkeepsie, New York. Mr. Lewis received a B.S. degree in
computer systems engineering and an M.S. degree in computer
science from Rensselaer Polytechnic Institute in 1995, and 2001,
respectively. In 1995, he joined IBM at its Burlington, Vermont,
facility and worked in the PowerPC processor hardware
development laboratory developing circuit design tools for
advanced microprocessor design. In 1996, he joined the POWER4
processor hardware development laboratory in Fishkill, New
York, where he continued his work in the area of circuit design tool
development. Currently, Mr. Lewis is the zSeries tools leader,
along with being the physical design automation leader for all
iSeries, pSeries, and zSeries microprocessors.

Robert D. Morel IBM Systems and Technology Group,
11400 Burnett Road, Austin, Texas 78758 (rmorel@us.ibm.com).
Mr. Morel is a Senior Engineer in the iSeries, pSeries, and zSeries
hardware development laboratory in Austin, Texas. In 1993 he
joined IBM at its Burlington, Vermont, facility and worked in the
PowerPC hardware development laboratory developing tools and
methodologies for advanced microprocessor design. In 1996 he
joined the POWER4 hardware development laboratory in Fishkill,
New York, where he continued his work in the area of tools and
methodology development. Mr. Morel received B.S.E.E. and
M.S.E.E. degrees in 1992 and 1996, respectively, from the
University of Vermont in Burlington. He has received an
Outstanding Technical Achievement Award for his work in tools
and methodology development.

Thomas Rosser IBM Systems and Technology Group,
11400 Burnett Road, Austin, Texas 78758 (rosser@us.ibm.com).
Mr. Rosser is a Senior Technical Staff Member. He received his
B.S. degree in electrical engineering at the University of Missouri at
Columbia in 1976, and he joined IBM in Fishkill, New York. In his
30 years in design automation tools at IBM, he has worked in test
generation, fault simulation, software simulation, hardware
simulation, integrated tools development, design methodologies,
circuit characterization and rules, static timing, designer
productivity tools and interfaces, language parsing, design
verification, logic synthesis, and physical design optimization. He
holds 12 patents and serves on the Patent Review Board for the
Systems and Technology Group in Austin, Texas. He currently
leads the RLM flow for all IBM processors.

Nicole S. Schwartz IBM Systems and Technology Group,
11400 Burnet Road, Austin, Texas 78758 (nschwart@us.ibm.com).
Miss Schwartz is a Staff Engineer in the zSeries/pSeries integration
and tools department in Austin, Texas. She joined IBM in 2001 as
a member of the chip integration team for the POWER family of
processors. She has continued to work in unit and chip integration
on the pSeries and zSeries chips with a primary focus on global
clock distribution tools and methodology. Miss Schwartz received

a B.S.E. in electrical engineering and computer science from Duke
University in 2001 and an M.S.E. in computer engineering from
the University of Texas at Austin in 2006.

Philip Shephard IBM Systems and Technology Group,
11500 Burnet Road, Austin, Texas 77850 (shephard@us.ibm.com).
Mr. Shephard is a Senior Engineer in the PCORE/SRAM design
department. He received a B.S.E.E. degree from DeVry Institute of
Technology in 1977 and an M.S. degree in computer science from
Union College in 1984. He joined IBM in 1978. He worked on
various aspects of design for testability (DFT) through 2001 when
he took an assignment to drive the implementation and bring-up of
transistor-level timing analysis on SRAMs. He holds ten patents in
the fields of DFT and timing analysis, with two more pending, and
he has received two IBM Outstanding Technical Achievement
Awards.

Howard H. Smith 2455 South Road, Poughkeepsie, New York
12601 (smithh@us.ibm.com). Mr. Smith received a B.S. and an
M.S. degree in electrical engineering from the New Jersey Institute
of Technology, Newark, New Jersey, in 1984 and 1985,
respectively. He joined IBM in 1984 as an integrated circuit
engineer at its semiconductor development laboratory in Fishkill,
New York, working in the area of high-performance gate array
designs. Mr. Smith is currently a Senior Engineer at the IBM
Systems and Technology group in Poughkeepsie, New York, where
he is responsible for electrical analysis issues associated with high-
density CMOS circuit technology and package-related products.
His recent assignments include the development of on-chip noise
and power grid verification processes for the IBM processor
designs. His expertise lies in the area of electrical noise modeling
and prediction at system-level computer operation. He has
coauthored several papers on system-level noise prediction, on-chip
interconnects, and electromagnetic characterization of connectors
and antennas. He has several patents in his field of expertise.

Dave Thomas IBM Systems and Technology Group,
3039 Cornwallis Road, Research Triangle Park, North Carolina
27709 (thomasdr@us.ibm.com). Mr. Thomas is a Senior Engineer.
He received his B.S. degree in electrical engineering at the
University of Missouri at Columbia in 1977 and completed
graduate coursework at the University of Kentucky. He joined
IBM in 1977 and worked as a DRAM Circuit Designer. Over his
29-year career with IBM, he has performed in many roles including
management, analog circuit design, modem design, logic design,
dc/dc converter design, and tools software development. He
received an Outstanding Technical Achievement Award for Smart
Power development and holds seven patents in power control
systems, unique circuit topologies for integrating dc/dc regulators
on VLSI chips, and nonvolatile memory cells. He is currently
responsible for development of power/performance/yield
estimation tools for zSeries and pSeries processors.

Phillip J. Restle IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (restle@us.ibm.com). Dr. Restle received a Ph.D. in physics
from the University of Illinois in 1986. At IBM Research, he has
worked on CMOS modeling, package test, DRAM variable
retention time, and high-speed interconnect modeling. For the past
decade, he has concentrated on methodology, tools, and designs
for high-performance clock distribution networks. He has
contributed to more than a dozen high-performance
microprocessors including all recent IBM mainframes, the

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 R. BERRIDGE ET AL.

713

POWER4, POWER5, and POWER6 microprocessors, and the
Microsoft Xbox 360** entertainment system and the Sony Cell
Broadband Engine** processors.

John R. Ripley IBM Systems and Technology Group,
11500 Burnet Road, Austin, Texas 77850 (rip@us.ibm.com). Mr.
Ripley is a Senior Technical Staff Member in the iSeries, pSeries,
and zSeries hardware development laboratory in Austin, Texas. He
received a B.S. degree in electrical engineering from the University
of Tennessee and an M.S.E.E. degree from the University of Texas
in 1985. He joined IBM in 1980 and has worked on advanced
CMOS microprocessor development spanning the POWER
microprocessor to the current POWER6 microprocessor. Over his
career with IBM, he has performed many roles including
management, logic design, circuit design, DFT, integration tools
and methodology development, and chip integration. He is
currently the lead chip integrator for the POWER6 chip.

Stephen L. Runyon IBM Systems and Technology Group,
11500 Burnet Road, Austin, Texas 78758 (steve@us.ibm.com). Mr.
Runyon is a Senior Technical Staff Member working in the areas of
process technology, physical design and circuit layout, yield, design
for manufacturability and physical verification. He received a
B.E.E. degree from the Georgia Institute of Technology in 1980
and joined IBM in 1981, where he has worked in circuit design,
layout, and checking, and later in chip integration and technology.
He received an M.S.E.E. degree from the University of Texas in
1985 and holds numerous patents in various areas. He has received
two Outstanding Technical Achievement Awards for his work on
POWER4 and POWER5 processor designs.

Patrick M. Williams IBM Systems and Technology Group,
2070 Route 52, Hopewell Junction, New York 12533
(patricw@us.ibm.com). Mr. Williams is Senior Engineering
Manager of the transistor-level automation department in the
engineering design automation group. In 1984, he joined IBM at
the East Fishkill facility, where he developed VLSI high-speed
memory test systems. In 1992, he joined the advanced CMOS
microprocessor team in Poughkeepsie, New York. He was initially
part of the processor SRAM development team and in 1994 joined
the CAD development team in support of the zSeries line of
processors. He was the Lead Circuit Methodologist in support of
the POWER6 processor development. Mr. Williams has been
involved in many aspects of CAD development related to high-
speed microprocessors, including timing, noise, power, internal
resistance drop and electromigration analysis, device and parasitic
extraction, chip integration, circuit optimization, electrical
checking, and layout automation. He received a B.S.E.E. degree
from Pennsylvania State University in 1984. Mr. Williams holds
several U.S. patents and has received four IBM Outstanding
Technical Achievement Awards.

R. BERRIDGE ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

714

