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ABSTRACT
Historically, improvements in GPU-based high performance comput-
ing have been tightly coupled to transistor scaling. As Moore’s law
slows down, and the number of transistors per die no longer grows
at historical rates, the performance curve of single monolithic GPUs
will ultimately plateau. However, the need for higher performing
GPUs continues to exist in many domains. To address this need, in
this paper we demonstrate that package-level integration of multiple
GPU modules to build larger logical GPUs can enable continuous
performance scaling beyond Moore’s law. Specifically, we propose
partitioning GPUs into easily manufacturable basic GPU Modules
(GPMs), and integrating them on package using high bandwidth and
power efficient signaling technologies. We lay out the details and
evaluate the feasibility of a basic Multi-Chip-Module GPU (MCM-
GPU) design. We then propose three architectural optimizations that
significantly improve GPM data locality and minimize the sensitivity
on inter-GPM bandwidth. Our evaluation shows that the optimized
MCM-GPU achieves 22.8% speedup and 5x inter-GPM bandwidth
reduction when compared to the basic MCM-GPU architecture. Most
importantly, the optimized MCM-GPU design is 45.5% faster than
the largest implementable monolithic GPU, and performs within
10% of a hypothetical (and unbuildable) monolithic GPU. Lastly we
show that our optimized MCM-GPU is 26.8% faster than an equally
equipped Multi-GPU system with the same total number of SMs and
DRAM bandwidth.

CCS CONCEPTS
• Computing methodologies → Graphics processors; • Computer
systems organization → Parallel architectures; Single instruction,
multiple data;
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1 INTRODUCTION
GPU-based compute acceleration is the main vehicle propelling the
performance of high performance computing (HPC) systems [12, 17,
29], machine learning and data analytics applications in large-scale
cloud installations, and personal computing devices [15, 17, 35, 47].
In such devices, each computing node or computing device typically
consists of a CPU with one or more GPU accelerators. The path for-
ward in any of these domains, either to exascale performance in HPC,
or to human-level artificial intelligence using deep convolutional neu-
ral networks, relies on the ability to continuously scale GPU perfor-
mance [29, 47]. As a result, in such systems, each GPU has the maxi-
mum possible transistor count at the most advanced technology node,
and uses state-of-the-art memory technology [17]. Until recently,
transistor scaling improved single GPU performance by increasing
the Streaming Multiprocessor (SM) count between GPU generations.
However, transistor scaling has dramatically slowed down and is
expected to eventually come to an end [7, 8]. Furthermore, optic
and manufacturing limitations constrain the reticle size which in
turn constrains the maximum die size (e.g. ≈ 800mm2 [18, 48]).
Moreover, very large dies have extremely low yield due to large
numbers of irreparable manufacturing faults [31]. This increases the
cost of large monolithic GPUs to undesirable levels. Consequently,
these trends limit future scaling of single GPU performance and
potentially bring it to a halt.

An alternate approach to scaling performance without exceeding
the maximum chip size relies on multiple GPUs connected on a
PCB, such as the Tesla K10 and K80 [10]. However, as we show in
this paper, it is hard to scale GPU workloads on such “multi-GPU”
systems, even if they scale very well on a single GPU. This is due
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Figure 1: MCM-GPU: Aggregating GPU modules and DRAM
on a single package.

to multiple unsolved challenges related to work partitioning, load
balancing, and data sharing across the slow on-board interconnection
network [20, 23, 33, 36]. However, due to recent advances in packag-
ing [30] and signaling technologies [45], package-level integration
provides a promising integration tier that lies between the existing
on-chip and on-board integration technologies.

Leveraging this new integration tier, we propose a novel Multi-
Chip Module GPU (MCM-GPU) architecture that enables contin-
ued GPU performance scaling despite the slowdown of transistor
scaling and photoreticle limitations. Our proposal aggregates mul-
tiple GPU Modules (GPMs) within a single package as illustrated
in Figure 1. First, we detail the basic MCM-GPU architecture that
leverages NVIDIA’s state-of-the-art Ground Reference Signaling
(GRS) [45]. We then optimize our proposed MCM-GPU design
using three architectural innovations targeted at improving locality
and minimizing inter-GPM communication: (i) hardware caches to
capture remote traffic in the local GPM, (ii) distributed and batched
co-operative thread array (CTA) scheduling to better leverage inter-
CTA locality within a GPM, and (iii) first touch page allocation
policy to minimize inter-GPM traffic. Overall, this paper makes the
following contributions:

• We motivate the need for more powerful GPUs by show-
ing that many of today’s GPU applications scale very well
with increasing number of SMs. Given future GPUs can
no longer continue their performance scaling using today’s
monolithic architectures, we propose the MCM-GPU archi-
tecture that allows performance and energy efficient scaling
beyond what is possible today.

• We present a modular MCM-GPU with 256 SMs and dis-
cuss its memory system, on-package integration, and sig-
naling technology. We show its performance sensitivity to
inter-GPM bandwidth both analytically and via simulations.
Our evaluation shows that since inter-GPM bandwidth is
lower than a monolithic GPU’s on-chip bandwidth, an on-
package non-uniform memory access (NUMA) architecture
is exposed in the MCM-GPU.

• We propose a locality-aware MCM-GPU architecture, bet-
ter suited to its NUMA nature. We use architectural en-
hancements to mitigate the penalty introduced by non-
uniform memory accesses. Our evaluations show that these

Fermi Kepler Maxwell Pascal
SMs 16 15 24 56
BW (GB/s) 177 288 288 720
L2 (KB) 768 1536 3072 4096
Transistors (B) 3.0 7.1 8.0 15.3
Tech. node (nm) 40 28 28 16
Chip size (mm2) 529 551 601 610

Table 1: Key characteristics of recent NVIDIA GPUs.

optimizations provide an impressive 5x inter-GPM band-
width reduction, and result in a 22.8% performance speedup
compared to the baseline MCM-GPU. Our optimized MCM-
GPU architecture achieves a 44.5% speedup over the largest
possible monolithic GPU (assumed as a 128 SMs GPU),
and comes within 10% of the performance of an unbuild-
able similarly sized monolithic GPU.

• Finally, we compare our MCM-GPU architecture to a multi-
GPU approach. Our results confirm the intuitive advantages
of the MCM-GPU approach.

2 MOTIVATION AND BACKGROUND
Modern GPUs accelerate a wide spectrum of parallel applications
in the fields of scientific computing, data analytics, and machine
learning. The abundant parallelism available in these applications
continually increases the demands for higher performing GPUs.
Table 1 lists different generations of NVIDIA GPUs released in the
past decade. The table shows an increasing trend for the number of
streaming multiprocessors (SMs), memory bandwidth, and number
of transistors with each new GPU generation [14].

2.1 GPU Application Scalability
To understand the benefits of increasing the number of GPU SMs,
Figure 2 shows performance as a function of the number of SMs
on a GPU. The L2 cache and DRAM bandwidth capacities are
scaled up proportionally with the SM count, i.e., 384 GB/s for a
32-SM GPU and 3 TB/s for a 256-SM GPU1. The figure shows
two different performance behaviors with increasing SM counts.
First is the trend of applications with limited parallelism whose
performance plateaus with increasing SM count (Limited Parallelism
Apps). These applications exhibit poor performance scalability (15
of the total 48 applications evaluated) due to the lack of available
parallelism (i.e. number of threads) to fully utilize larger number of
SMs. On the other hand, we find that 33 of the 48 applications exhibit
a high degree of parallelism and fully utilize a 256-SM GPU. Note
that such a GPU is substantially larger (4.5×) than GPUs available
today. For these High-Parallelism Apps, 87.8% of the linearly-scaled
theoretical performance improvement can potentially be achieved if
such a large GPU could be manufactured.

Unfortunately, despite the application performance scalability
with the increasing number of SMs, the observed performance gains
are unrealizable with a monolithic single-die GPU design. This
is because the slowdown in transistor scaling [8] eventually limits
the number of SMs that can be integrated onto a given die area.
Additionally, conventional photolithography technology limits the
maximum possible reticle size and hence the maximum possible

1See Section 4 for details on our experimental methodology
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Figure 2: Hypothetical GPU performance scaling with grow-
ing number of SMs and memory system. 48 applications are
grouped into 33 that have enough parallelism to fill a 256 SMs
GPU, and 15 that do not.

die size. For example, ≈ 800mm2 is expected to be the maximum
possible die size that can be manufactured [18, 48]. For the purpose
of this paper we assume that GPUs with greater than 128 SMs are not
manufacturable on a monolithic die. We illustrate the performance
of such an unmanufacturable GPU with dotted lines in Figure 2.

2.2 Multi-GPU Alternative
An alternative approach is to stop scaling single GPU performance,
and increase application performance via board- and system-level
integration, by connecting multiple maximally sized monolithic
GPUs into a multi-GPU system. While conceptually simple, multi-
GPU systems present a set of critical challenges. For instance, work
distribution across GPUs cannot be done easily and transparently and
requires significant programmer expertise [20, 25, 26, 33, 42, 50].
Automated multi-GPU runtime and system-software approaches also
face challenges with respect to work partitioning, load balancing,
and synchronization [23, 49].

Moreover, a multi-GPU approach heavily relies on multiple lev-
els of system interconnections. It is important to note that the data
movement and synchronization energy dissipated along these inter-
connects significantly affects the overall performance and energy
efficiency of such multi-GPU systems. Unfortunately, the quality
of interconnect technology in terms of available bandwidth and en-
ergy per bit becomes progressively worse as communication moves
off-package, off-board, and eventually off-node, as shown in Ta-
ble 2 [9, 13, 16, 32, 46]. While the above integration tiers are an
essential part of large systems (e.g. [19]), it is more desirable to
reduce the off-board and off-node communication by building more
capable GPUs.

2.3 Package-Level Integration
Recent advances in organic package technology are expected to ad-
dress today’s challenges and enable on-package integration of active
components. For example, next generation packages are expected to
support a 77mm substrate dimension [30], providing enough room
to integrate the MCM-GPU architecture described in this paper. Fur-
thermore, advances in package level signaling technologies such as
NVIDIA’s Ground-Referenced Signaling (GRS), offer the necessary
high-speed, high-bandwidth signaling for organic package substrates.

Chip Package Board System
BW 10s TB/s 1.5 TB/s 256 GB/s 12.5 GB/s

Energy 80 fJ/bit 0.5 pJ/bit 10 pJ/bit 250 pJ/bit
Overhead Low Medium High Very High

Table 2: Approximate bandwidth and energy parameters for
different integration domains.

GRS signaling can operate at 20 Gb/s while consuming just 0.54
pJ/bit in a standard 28nm process [45]. As this technology evolves,
we can expect it to support up to multiple TB/s of on-package band-
width. This makes the on-package signaling bandwidth eight times
larger than that of on-board signaling.

The aforementioned factors make package level integration a
promising integration tier, that qualitatively falls in between chip-
and board-level integration tiers (See Table 2). In this paper, we aim
to take advantage of this integration tier and set the ambitious goal of
exploring how to manufacture a 2× more capable GPU, comprising
256 or more SMs within a single GPU package.

3 MULTI-CHIP-MODULE GPUS
The proposed Multi-Chip Module GPU (MCM-GPU) architecture
is based on aggregating multiple GPU modules (GPMs) within a
single package, as opposed to today’s GPU architecture based on a
single monolithic die. This enables scaling single GPU performance
by increasing the number of transistors, DRAM, and I/O bandwidth
per GPU. Figure 1 shows an example of an MCM-GPU architecture
with four GPMs on a single package that potentially enables up to
4× the number of SMs (chip area) and 2× the memory bandwidth
(edge size) compared to the largest GPU in production today.

3.1 MCM-GPU Organization
In this paper we propose the MCM-GPU as a collection of GPMs
that share resources and are presented to software and programmers
as a single monolithic GPU. Pooled hardware resources, and shared
I/O are concentrated in a shared on-package module (the SYS +
I/O module shown in Figure 1). The goal for this MCM-GPU is to
provide the same performance characteristics as a single (unmanu-
facturable) monolithic die. By doing so, the operating system and
programmers are isolated from the fact that a single logical GPU
may now be several GPMs working in conjunction. There are two
key advantages to this organization. First, it enables resource sharing
of underutilized structures within a single GPU and eliminates hard-
ware replication among GPMs. Second, applications will be able to
transparently leverage bigger and more capable GPUs, without any
additional programming effort.

Alternatively, on-package GPMs could be organized as multiple
fully functional and autonomous GPUs with very high speed in-
terconnects. However, we do not propose this approach due to its
drawbacks and inefficient use of resources. For example, if imple-
mented as multiple GPUs, splitting the off-package I/O bandwidth
across GPMs may hurt overall bandwidth utilization. Other com-
mon architectural components such as virtual memory management,
DMA engines, and hardware context management would also be pri-
vate rather than pooled resources. Moreover, operating systems and
programmers would have to be aware of potential load imbalance
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Figure 3: Basic MCM-GPU architecture comprising four GPU
modules (GPMs).

and data partitioning between tasks running on such an MCM-GPU
that is organized as multiple independent GPUs in a single package.

3.2 MCM-GPU and GPM Architecture
As discussed in Sections 1 and 2, moving forward beyond 128 SM
counts will almost certainly require at least two GPMs in a GPU.
Since smaller GPMs are significantly more cost-effective [31], in
this paper we evaluate building a 256 SM GPU out of four GPMs
of 64 SMs each. This way each GPM is configured very similarly
to today’s biggest GPUs. Area-wise each GPM is expected to be
40% - 60% smaller than today’s biggest GPU assuming the process
node shrinks to 10nm or 7nm. Each GPM consists of multiple SMs
along with their private L1 caches. SMs are connected through
the GPM-Xbar to a GPM memory subsystem comprising a local
memory-side L2 cache and DRAM partition. The GPM-Xbar also
provides connectivity to adjacent GPMs via on-package GRS [45]
inter-GPM links.

Figure 3 shows the high-level diagram of this 4-GPM MCM-
GPU. Such an MCM-GPU is expected to be equipped with 3TB/s
of total DRAM bandwidth and 16MB of total L2 cache. All DRAM
partitions provide a globally shared memory address space across
all GPMs. Addresses are fine-grain interleaved across all physical
DRAM partitions for maximum resource utilization. GPM-Xbars
route memory accesses to the proper location (either the local or
a remote L2 cache bank) based on the physical address. They also
collectively provide a modular on-package ring or mesh interconnect
network. Such organization provides spatial traffic locality among lo-
cal SMs and memory partitions, and reduces on-package bandwidth
requirements. Other network topologies are also possible especially
with growing number of GPMs, but a full exploration of inter-GPM
network topologies is outside the scope of this paper. The L2 cache
is a memory-side cache, caching data only from its local DRAM
partition. As such, there is only one location for each cache line,
and no cache coherency is required across the L2 cache banks. In
the baseline MCM-GPU architecture we employ a centralized CTA
scheduler that schedules CTAs to MCM-GPU SMs globally in a
round-robin manner as SMs become available for execution, as in
the case of a typical monolithic GPU.
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Figure 4: Relative performance sensitivity to inter-GPM link
bandwidth for a 4-GPM, 256SM MCM-GPU system.

The MCM-GPU memory system is a Non Uniform Memory Ac-
cess (NUMA) architecture, as its inter-GPM links are not expected to
provide full aggregated DRAM bandwidth to each GPM. Moreover,
an additional latency penalty is expected when accessing memory on
remote GPMs. This latency includes data movement time within the
local GPM to the edge of the die, serialization and deserialization
latency over the inter-GPM link, and the wire latency to the next
GPM. We estimate each additional inter-GPM hop latency, for a po-
tentially multi-hop path in the on-package interconnect as 32 cycles.
Each additional hop also adds an energy cost compared to a local
DRAM access. Even though we expect the MCM-GPU architecture
to incur these bandwidth, latency, and energy penalties, we expect
them to be much lower compared to off-package interconnects in a
multi-GPU system (see Table 2).

3.3 On-Package Bandwidth Considerations
3.3.1 Estimation of On-package Bandwidth Requirements.

We calculate the required inter-GPM bandwidth in a generic MCM-
GPU. The basic principle for our analysis is that on-package links
need to be sufficiently sized to allow full utilization of expensive
DRAM bandwidth resources. Let us consider a 4-GPM system with
an aggregate DRAM bandwidth of 4b units (3TB/s in our example),
such that b units of bandwidth (768 GB/s in our example) are deliv-
ered by the local memory partition directly attached to each GPM.
Assuming an L2 cache hit-rate of ∼ 50% for the average case, 2b
units of bandwidth would be supplied from each L2 cache partition.
In a statistically uniform address distribution scenario, 2b units of
bandwidth out of each memory partition would be equally consumed
by all four GPMs. Extending this exercise to capture inter-GPM
communication to and from all memory partitions results in the
total inter-GPM bandwidth requirement of the MCM-GPU. A link
bandwidth of 4b would be necessary to provide 4b total DRAM band-
width. In our 4-GPM MCM-GPU example with 3TB/s of DRAM
bandwidth (4b), link bandwidth settings of less than 3TB/s are ex-
pected to result in performance degradation due to NUMA effects.
Alternatively, inter-GPM bandwidth settings greater than 3TB/s are
not expected to yield any additional performance.

3.3.2 Performance Sensitivity to On-Package Bandwidth.
Figure 4 shows performance sensitivity of a 256 SM MCM-GPU
system as we decrease the inter-GPM bandwidth from an abun-
dant 6TB/s per link all the way to 384GB/s. The applications are
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grouped into two major categories of high- and low-parallelism,
similar to Figure 2. The scalable high-parallelism category is further
subdivided into memory-intensive and compute-intensive applica-
tions (For further details about application categories and simulation
methodology see Section 4).

Our simulation results support our analytical estimations above.
Increasing link bandwidth to 6TB/s yields diminishing or even no
return for an entire suite of applications. As expected, MCM-GPU
performance is significantly affected by the inter-GPM link band-
width settings lower than 3TB/s. For example, applications in the
memory-intensive category are the most sensitive to link bandwidth,
with 12%, 40%, and 57% performance degradation for 1.5TB/s,
768GB/s, and 384GB/s settings respectively. Compute-intensive
applications are also sensitive to lower link bandwidth settings, how-
ever with lower performance degradations. Surprisingly, even the
non-scalable applications with limited parallelism and low memory
intensity show performance sensitivity to the inter-GPM link band-
width due to increased queuing delays and growing communication
latencies in the low bandwidth scenarios.

3.3.3 On-Package Link Bandwidth Configuration.
NVIDIA’s GRS technology can provide signaling rates up to 20
Gbps per wire. The actual on-package link bandwidth settings for
our 256 SM MCM-GPU can vary based on the amount of design
effort and cost associated with the actual link design complexity, the
choice of packaging technology, and the number of package routing
layers. Therefore, based on our estimations, an inter-GPM GRS link
bandwidth of 768 GB/s (equal to the local DRAM partition band-
width) is easily realizable. Larger bandwidth settings such as 1.5
TB/s are possible, albeit harder to achieve, and a 3TB/s link would re-
quire further investment and innovations in signaling and packaging
technology. Moreover, higher than necessary link bandwidth settings
would result in additional silicon cost and power overheads. Even
though on-package interconnect is more efficient than its on-board
counterpart, it is still substantially less efficient than on-chip wires
and thus we must minimize inter-GPM link bandwidth consumption
as much as possible.

In this paper we assume a low-effort, low-cost, and low-energy
link design point of 768GB/s and make an attempt to bridge the
performance gap due to relatively lower bandwidth settings via ar-
chitectural innovations that improve communication locality and
essentially eliminate the need for more costly and less energy effi-
cient links. The rest of the paper proposes architectural mechanisms
to capture data-locality within GPM modules, which eliminate the
need for costly inter-GPM bandwidth solutions.

4 SIMULATION METHODOLOGY
We use an NVIDIA in-house simulator to conduct our performance
studies. We model the GPU to be similar to, but extrapolated in size
compared to the recently released NVIDIA Pascal GPU [17]. Our
SMs are modeled as in-order execution processors that accurately
model warp-level parallelism. We model a multi-level cache hierar-
chy with a private L1 cache per SM and a shared L2 cache. Caches
are banked such that they can provide the necessary parallelism to
saturate DRAM bandwidth. We model software based cache coher-
ence in the private caches, similar to state-of-the-art GPUs. Table 3
summarizes baseline simulation parameters.

Number of GPMs 4
Total number of SMs. 256

GPU frequency 1GHz
Max number of warps 64 per SM

Warp scheduler Greedy then Round Robin
L1 data cache 128 KB per SM, 128B lines, 4 ways
Total L2 cache 16MB, 128B lines, 16 ways

Inter-GPM interconnect 768GB/s per link, Ring, 32 cycles/hop
Total DRAM bandwidth 3 TB/s

DRAM latency 100ns

Table 3: Baseline MCM-GPU configuration.

Benchmark Abbr. Memory Footprint (MB)

Algebraic multigrid solver AMG 5430
Neural Network Convolution NN-Conv 496

Breadth First Search BFS 37
CFD Euler3D CFD 25

Classic Molecular Dynamics CoMD 385
Kmeans clustering Kmeans 216
Lulesh (size 150) Lulesh1 1891
Lulesh (size 190) Lulesh2 4309

Lulesh unstructured Lulesh3 203
Adaptive Mesh Refinement MiniAMR 5407

Mini Contact Solid Mechanics MnCtct 251
Minimum Spanning Tree MST 73
Nekbone solver (size 18) Nekbone1 1746
Nekbone solver (size 12) Nekbone2 287

SRAD (v2) Srad-v2 96
Shortest path SSSP 37
Stream Triad Stream 3072

Table 4: The high parallelism, memory intensive workloads and
their memory footprints2.

We study a diverse set of 48 benchmarks that are taken from
four benchmark suites. Our evaluation includes a set of production
class HPC benchmarks from the CORAL benchmarks [6], graph
applications from Lonestar suite [43], compute applications from
Rodinia [24], and a set of NVIDIA in-house CUDA benchmarks.
Our application set covers a wide range of GPU application domains
including machine learning, deep neural networks, fluid dynamics,
medical imaging, graph search, etc. We classify our applications into
two categories based on the available parallelism — high parallelism
applications (parallel efficiency >= 25%) and limited parallelism ap-
plications (parallel efficiency < 25%). We further categorize the high
parallelism applications based on whether they are memory-intensive
(M-Intensive) or compute-intensive (C-Intensive). We classify an
application as memory-intensive if it suffers from more than 20% per-
formance degradation if the system memory bandwidth is halved. In
the interest of space, we present the detailed per-application results
for the M-Intensive category workloads and present only the average
numbers for the C-Intensive and limited-parallelism workloads. The
set of M-Intensive benchmarks, and their memory footprints are
detailed in Table 4. We simulate all our benchmarks for one billion
warp instructions, or to completion, whichever occurs first.

2Other evaluated compute intensive and limited parallelism workloads are not shown in
Table 4.
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Figure 5: MCM-GPU architecture equipped with L1.5 GPM-
side cache to capture remote data and effectively reduce inter-
GPM bandwidth and data access latency.

5 OPTIMIZED MCM-GPU
We propose three mechanisms to minimize inter-GPM bandwidth
by capturing data locality within a GPM. First, we revisit the MCM-
GPU cache hierarchy and propose a GPM-side hardware cache.
Second, we augment our architecture with distributed CTA sched-
uling to exploit inter-CTA data locality within the GPM-side cache
and in memory. Finally, we propose data partitioning and locality-
aware page placement to further reduce on-package bandwidth re-
quirements. The three mechanisms combined significantly improve
MCM-GPU performance.

5.1 Revisiting MCM-GPU Cache Architecture
5.1.1 Introducing L1.5 Cache.

The first mechanism we propose to reduce on-package link band-
width is to enhance the MCM-GPU cache hierarchy. We propose to
augment our baseline GPM architecture in Figure 3 with a GPM-
side cache that resides between the L1 and L2 caches. We call this
new cache level the L1.5 cache as shown in Figure 5. Architec-
turally, the L1.5 cache can be viewed as an extension of the L1
cache and is shared by all SMs inside a GPM. We propose that the
L1.5 cache stores remote data accesses made by a GPM partition. In
other words, all local memory accesses will bypass the L1.5 cache.
Doing so reduces both remote data access latency and inter-GPM
bandwidth. Both these properties improve performance and reduce
energy consumption by avoiding inter-GPM communication.

To avoid increasing on-die transistor overhead for the L1.5 cache,
we add it by rebalancing the cache capacity between the L2 and L1.5
caches in an iso-transistor manner. We extend the GPU L1 cache
coherence mechanism to the GPM-side L1.5 caches as well. This
way, whenever an L1 cache is flushed on a synchronization event
such as reaching a kernel execution boundary, the L1.5 cache is
flushed as well. Since the L1.5 cache can receive multiple invalida-
tion commands from GPM SMs, we make sure that the L1.5 cache
is invalidated only once for each synchronization event.

5.1.2 Design Space Exploration for the L1.5 Cache.
We evaluate MCM-GPU performance for three different L1.5 cache

capacities: an 8MB L1.5 cache where half of the memory-side L2
cache capacity is moved to the L1.5 caches, a 16MB L1.5 cache
where almost all of the memory-side L2 cache is moved to the L1.5
caches3, and finally a 32MB L1.5 cache, a non iso-transistor scenario
where in addition to moving the entire L2 cache capacity to the L1.5
caches we add an additional 16MB of cache capacity. As the primary
objective of the L1.5 cache is to reduce the inter-GPM bandwidth
consumption, we evaluate different cache allocation policies based
on whether accesses are to the local or remote DRAM partitions.

Figure 6 summarizes the MCM-GPU performance for differ-
ent L1.5 cache sizes. We report the average performance speedups
for each category, and focus on the memory-intensive category by
showing its individual application speedups. We observe that per-
formance for the memory-intensive applications is sensitive to the
L1.5 cache capacity, while applications in the compute-intensive and
limited-parallelism categories show very little sensitivity to various
cache configurations. When focusing on the memory-intensive ap-
plications, an 8MB iso-transistor L1.5 cache achieves 4% average
performance improvement compared to the baseline MCM-GPU. A
16MB iso-transistor L1.5 cache achieves 8% performance improve-
ment, and a 32MB L1.5 cache that doubles the transistor budget
achieves an 18.3% performance improvement. We choose the 16MB
cache capacity for the L1.5 and keep the total cache area constant.

Our simulation results confirm the intuition that the best alloca-
tion policy for the L1.5 cache is to only cache remote accesses, and
therefore we employ a remote-only allocation policy in this cache.
From Figure 6 we can see that such a configuration achieves the
highest average performance speedup among the two iso-transistor
configurations. It achieves an 11.4% speedup over the baseline for
the memory-intensive GPU applications. While the GPM-side L1.5
cache has minimal impact on the compute-intensive GPU applica-
tions, it is able to capture the relatively small working sets of the
limited-parallelism GPU applications and provide a performance
speedup of 3.5% over the baseline. Finally, Figure 6 shows that
the L1.5 cache generally helps applications that incur significant
performance loss when moving from a 6TB/s inter-GPM bandwidth
setting to 768GB/s. This trend can be seen in the figure as the
memory-intensive applications are sorted by their inter-GPM band-
width sensitivity from left to right.

In addition to improving MCM-GPU performance, the GPM-side
L1.5 cache helps to significantly reduce the inter-GPM communi-
cation energy associated with on-package data movements. This is
illustrated by Figure 7 which summarizes the total inter-GPM band-
width with and without L1.5 cache. Among the memory-intensive
workloads, inter-GPM bandwidth is reduced by as much as 39.9% for
the SSSP application and by an average of 16.9%, 36.4%, and 32.9%
for memory-intensive, compute-intensive, and limited-parallelism
workloads respectively. On average across all evaluated workloads,
we observe that inter-GPM bandwidth utilization is reduced by 28%
due to the introduction of the GPM-side L1.5 cache.

5.2 CTA Scheduling for GPM Locality
In a baseline MCM-GPU similar to monolithic GPU, at kernel
launch, a first batch of CTAs are scheduled to the SMs by a central-
ized scheduler in-order. However during kernel execution, CTAs are
3A small cache capacity of 32KB is maintained in the memory-side L2 cache to
accelerate atomic operations.
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Increasing Sensitivity to Inter-GPM Bandwidth 

0.5
1

1.5
2

2.5
3

N
N

-C
o

n
v

St
re

am

Sr
ad

-v
2

Lu
le

sh
1

SS
SP

Lu
le

sh
2

M
in

iA
M

R

K
m

ea
n

s

N
ek

b
o

n
e1

Lu
le

sh
3

B
FS

M
n

C
tc

t

N
ek

b
o

n
e2

A
M

G

M
ST

C
FD

C
o

M
D

M
-I

n
te

n
si

ve

C
-I

n
te

n
si

ve

Li
m

. P
ar

al
le

l

M-Intensive GeoMean

Sp
e

e
d

u
p

 O
ve

r 
B

as
e

lin
e

 
M

C
M

-G
P

U
 

8 MB L1.5 8 MB Remote Only L1.5 16 MB L1.5 16 MB Remote Only L1.5 32 MB L1.5 32 MB Remote Only L1.5

Figure 6: Performance of 256 SM, 768 GB/s inter-GPM BW MCM-GPU with 8MB (iso-transistor), 16 MB (iso-transistor), and 32
MB (non-iso-transistor) L1.5 caches. The M-Intensive applications are sorted by their sensitivity to inter-GPM bandwidth.
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Baseline MCM-GPU 16 MB Remote Only L1.5

Figure 7: Total inter-GPM bandwidth in baseline MCM-GPU
architecture and with a 16MB remote-only L1.5 cache.

allocated to SMs in a round-robin order based on the availability
of resources in the SMs to execute a given CTA. In steady state
application execution, this could result in consecutive CTAs being
scheduled on SMs in different GPMs as shown in Figure 8(a). The
colors in this figure represent four groups of contiguous CTAs that
could potentially enjoy data locality if they were scheduled in close
proximity and share memory system resources. While prior work
has attempted to exploit such inter-CTA locality in the private L1
cache [37], here we propose a CTA scheduling policy to exploit
this locality across all memory system components associated with
GPMs due to the NUMA nature of the MCM-GPU design.

To this end, we propose using a distributed CTA scheduler for
the MCM-GPU. With the distributed CTA scheduler, a group of
contiguous CTAs are sent to the same GPM as shown in Figure 8(b).
Here we see that all four contiguous CTAs of a particular group are
assigned to the same GPM. In the context of the MCM-GPU, doing
so enables better cache hit rates in the L1.5 caches and also reduces
inter-GPM communication. The reduced inter-GPM communication
occurs due to contiguous CTAs sharing data in the L1.5 cache and
avoiding data movement over the inter-GPM links. In the example
shown in Figure 8, the four groups of contiguous CTAs are scheduled
to run on one GPM each, to potentially exploit inter-CTA spatial
data locality.

We choose to divide the total number of CTAs in a kernel equally
among the number of GPMs, and assign a group of contiguous CTAs

CTA	A	

CTA	B	

CTA	B+2	

CTA	D	

CTA	A+1	

CTA	B+1	

CTA	B+3	

CTA	D+1	

GPM0	 GPM1	

CTA	A+2	

CTA	C	

CTA	C+1	

CTA	D+2	

CTA	A+3	

CTA	C+2	

CTA	C+3	

CTA	D+3	

GPM2	 GPM3	

(a) Centralized CTA Scheduling in an MCM-GPU

CTA	A	

CTA	A+1	

CTA	A+2	

CTA	A+3	

CTA	B	

CTA	B+1	

CTA	B+2	

CTA	B+3	

GPM0	 GPM1	

CTA	C	

CTA	C+1	

CTA	C+2	

CTA	C+3	

CTA	D	

CTA	D+1	

CTA	D+2	

CTA	D+3	

GPM2	 GPM3	

(b) Distributed CTA Scheduling in an MCM-GPU

Figure 8: An example of exploiting inter-CTA data locality with
CTA scheduling in MCM-GPU.

to a GPM. Figures 9 and 10 show the performance improvement
and bandwidth reduction provided by our proposal when combined
with the L1.5 cache described in the previous section. On aver-
age, the combination of these proposals improves performance by
23.4% / 1.9% / 5.2% on memory-intensive, compute-intensive, and
limited-parallelism workloads respectively. In addition, inter-GPM
bandwidth is reduced further by the combination of these propos-
als. On average across all evaluated workloads, we observe that
inter-GPM bandwidth utilization is reduced by 33%.
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Figure 9: Performance of MCM-GPU system with a distributed
scheduler.
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Baseline MCM-GPU 16MB Remote-Only L1.5 and DS

Figure 10: Reduction in inter-GPM bandwidth with a dis-
tributed scheduler compared to baseline MCM-GPU architec-
ture.

For workloads such as Srad-v2, and Kmeans, the combination
of distributed scheduling and remote-only caching provides signif-
icant performance improvement while remote-only caching does
not improve performance in isolation (Figure 6). This is due to the
improved inter-CTA data reuse in the L1.5 cache when distributed
scheduling is applied. Although distributed scheduling provides sig-
nificant additional performance benefit for a number of evaluated
workloads, we observe that it causes some applications to experience
degradation in performance. Such workloads tend to suffer from the
coarse granularity of CTA division and may perform better with a
smaller number of contiguous CTAs assigned to each GPM. A case
for a dynamic mechanism for choosing the group size could be made.
While we do not explore such a design in this paper, we expect a
dynamic CTA scheduler to obtain further performance gain.

5.3 Data Partitioning for GPM Locality
Prior work on NUMA systems focuses on co-locating code and
data by scheduling threads and placing pages accessed by those
threads in close proximity [27, 39, 53]. Doing so limits the nega-
tive performance impact of high-latency low-bandwidth inter-node
links by reducing remote accesses. In an MCM-GPU system, while
the properties of inter-GPM links are superior to traditional inter-
package links assumed in prior work (i.e., the ratio of local memory
bandwidth compared to remote memory bandwidth is much greater
and latency much lower for inter-package links), we revisit page
placement policies to reduce inter-GPM bandwidth.

DRAM DRAM 

GPM 0 

CTA X CTA Y 

MP 0 

GPM 1 

MP 1 time 
P3 

P2 

P0 

P1 

CTA X 

CTA Y 

P3 P0 P2 P1 

Figure 11: First Touch page mapping policy: (a) Access order.
(b) Proposed page mapping policy

To improve MCM-GPU performance, special care is needed for
page placement to reduce inter-GPM traffic when possible. Ideally,
we would like to map memory pages to physical DRAM partitions
such that they would incur as many local memory accesses as possi-
ble. In order to maximize DRAM bandwidth utilization and prevent
camping on memory channels within the memory partitions, we
will still interleave addresses at a fine granularity across the mem-
ory channels of each memory partition (analogous to the baseline
described in Section 3.2).

Figure 11 shows a schematic representation of the first touch
(FT) page mapping policy we employ in the MCM-GPU. When
a page is referenced for the first time in the FT policy, the page
mapping mechanism checks which GPM the reference is from and
maps the page to the local memory partition (MP) of that GPM.
For example, in the figure, page P0 is first accessed by CTA-X
which is executing on GPM0. This results in P0 being allocated in
MP0. Subsequently, pages P1 and P2 are first accessed by CTA-Y
executing on GPM1, which maps those pages to MP1. Following
this, page P3 is first accessed by CTA-X, which maps the page to
MP0. This policy results in keeping DRAM accesses mostly local.
Regardless of the referencing order, if a page is first referenced
from CTA-X in GPM0, then the page will be mapped to the MP0,
which would keep accesses to that page local and avoid inter-GPM
communication. This page placement mechanism is implemented
in the software layer by extending current GPU driver functionality.
Such driver modification is transparent to the OS, and does not
require any special handling from the programmer.

An important benefit that comes from the first touch mapping
policy is its synergy with our CTA scheduling policy described in
Section 5.2. We observe that inter-CTA locality exists across multiple
kernels and within each kernel at a page granularity. For example,
the same kernel is launched iteratively within a loop in applications
that contain convergence loops and CTAs with the same indices
are likely to access the same pages. Figure 12 shows an example
of this. As a result of our distributed CTA scheduling policy and
the first touch page mapping policy described above, we are able to
exploit inter-CTA locality across the kernel execution boundary as
well. This is enabled due to the fact that CTAs with the same indices
are bound to the same GPM on multiple iterative launches of the
kernel, therefore allowing the memory pages brought to a GPM’s
memory partition to continue to be local across subsequent kernel
launches. Note that this locality does not show itself without the
first touch page mapping policy as it does not increase L1.5 cache
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Figure 12: Exploiting cross-kernel CTA locality with First
Touch page placement and distributed CTA scheduling
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MCM-GPU	with	16MB	Remote	Only	L1.5,	DS,	and	FT	
MCM-GPU	with	8MB	Remote	Only	L1.5,	DS,	and	FT	

Figure 13: Performance of MCM-GPU with First Touch page
placement

hit rates since the caches are flushed at kernel boundaries. However,
we benefit significantly from more local accesses when distributed
scheduling is combined with first touch mapping.

FT also allows for much more efficient use of the cache hierarchy.
Since FT page placement keeps many accesses local to the memory
partition of a CTA’s GPM, it reduces pressure on the need for an
L1.5 cache to keep requests from going to remote memory partitions.
In fact using the first touch policy shifts the performance bottleneck
from inter-GPM bandwidth to local memory bandwidth. Figure 13
shows this effect. In this figure, we show two bars for each bench-
mark — FT with DS and 16MB remote-only L1.5 cache, and FT with
DS and 8MB remote-only L1.5 cache. The 16MB L1.5 cache leaves
room for only 32KB worth of L2 cache in each GPM. This results in
sub-optimal performance as there is insufficient cache capacity that
is allocated to local memory traffic. We observe that in the presence
of FT, an 8MB L1.5 cache along with a larger 8MB L2 achieves
better performance. The results show that with this configuration we
can obtain 51% /11.3% / 7.9% performance improvements compared
to the baseline MCM-GPU in memory-intensive, compute-intensive,
and limited parallelism applications respectively. Finally Figure 14
shows that with FT page placement a multitude of workloads experi-
ence a drastic reduction in their inter-GPM traffic, sometimes almost
eliminating it completely. On average our proposed MCM-GPU
achieves a 5× reduction in inter-GPM bandwidth compared to the
baseline MCM-GPU.
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Figure 14: Reduction in inter-GPM bandwidth with First Touch
page placement
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Figure 15: S-curve summarizing the optimized MCM-GPU per-
formance speedups for all workloads.

5.4 MCM-GPU Performance Summary
Figure 15 shows the s-curve depicting the performance improve-
ment of MCM-GPU for all workloads in our study. Of the evaluated
48 workloads, 31 workloads experience performance improvement
while 9 workloads suffer some performance loss. M-Intensive work-
loads such as CFD, CoMD and others experience drastic reduction in
inter-GPM traffic due to our optimizations and thus experience signif-
icant performance gains of up to 3.2× and 3.5× respectively. Work-
loads in the C-Intensive and limited parallelism categories that show
high sensitivity to inter-GPM bandwidth also experience significant
performance gains (e.g. 4.4× for SP and 3.1× for XSBench). On the
flip side, we observe two side-effects of the proposed optimizations.
For example, for workloads such as DWT and NN that have limited
parallelism and are inherently insensitive to inter-GPM bandwidth,
the additional latency introduced by the presence of the L1.5 cache
can lead to performance degradation by up to 14.6%. Another reason
for potential performance loss as observed in Streamcluster is due
to the reduced capacity of on-chip writeback L2 caches4 which leads
to increased write traffic to DRAM. This results in performance loss
of up to 25.3% in this application. Finally, we observe that there are
workloads (two in our evaluation set) where different CTAs perform
unequal amount of work. This leads to workload imbalance due to

4L1.5 caches are set up as write-through to support software based GPU coherence
implementation
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Figure 16: Breakdown of the sources of performance improve-
ments of optimized MCM-GPU when applied alone and to-
gether. Three proposed architectural improvements for MCM-
GPU almost close the gap with unbuildable monolithic GPU.

the coarse-grained distributed scheduling. We leave further optimiza-
tions of the MCM-GPU architecture that would take advantage of
this potential opportunity for better performance to future work.

In summary, we have proposed three important mircroarchitec-
tural enhancements to the baseline MCM-GPU architecture: (i) a
remote-only L1.5 cache, (ii) a distributed CTA scheduler, and (iii)
a first touch data page placement policy. It is important to note that
these independent optimizations, work best when they are combined
together. Figure 16 shows the performance benefit of employing the
three mechanisms individually. The introduction of the L1.5 cache
provides a 5.2% performance. Distributed scheduling and first touch
page placement on the other hand, do not improve performance at all
when applied individually. In fact they can even lead to performance
degradation, e.g., -4.7% for the first touch page placement policy.

However, when all three mechanisms are applied together, we ob-
serve that the optimized MCM-GPU, achieves a speedup of 22.8% as
shown in Figure 16. We observe that combining distributed schedul-
ing with the remote-only cache improves cache performance and re-
duces the inter-GPM bandwidth further. This results in an additional
4.9% performance benefit compared to having just the remote-only
cache while also reducing inter-GPM bandwidth by an additional
5%. Similarly, when first touch page placement is employed in con-
junction with the remote-only cache and distributed scheduling, it
provides an additional speedup of 12.7% and reduces inter-GPM
bandwidth by an additional 47.2%. These results demonstrate that
our proposed enhancements not only exploit the currently available
data locality within a program but also improve it. Collectively, all
three locality-enhancement mechanisms achieve a 5× reduction in
inter-GPM bandwidth. These optimizations enable the proposed
MCM-GPU to achieve a 45.5% speedup compared to the largest
implementable monolithic GPU and be within 10% of an equally
equipped albeit unbuildable monolithic GPU.

6 MCM-GPU VS MULTI-GPU
An alternative way of scaling GPU performance is to build multi-
GPU systems. This section compares performance and energy effi-
ciency of the MCM-GPU and two possible multi-GPU systems.

6.1 Performance vs Multi-GPU
A system with 256 SMs can also be built by interconnecting two
maximally sized discrete GPUs of 128 SMs each. Similar to our
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Figure 17: Performance comparison of MCM-GPU and Multi-
GPU.

MCM-GPU proposal, each GPU has a private 128KB L1 cache per
SM, an 8MB memory-side cache, and 1.5 TB/s of DRAM band-
width. We assume such a configuration as a maximally sized future
monolithic GPU design. We assume that two GPUs are intercon-
nected via the next generation of on-board level links with 256 GB/s
of aggregate bandwidth, improving upon the 160 GB/s commer-
cially available today [17]. For the sake of comparison with the
MCM-GPU we assume the multi-GPU to be fully transparent to the
programmer. This is accomplished by assuming the following two
features: (i) a unified memory architecture between two peer GPUs,
where both GPUs can access local and remote DRAM resources
with load/store semantics, (ii) a combination of system software and
hardware which automatically distributes CTAs of the same kernel
across GPUs.

In such a multi-GPU system the challenges of load imbalance,
data placement, workload distribution and interconnection band-
width discussed in Sections 3 and 5, are amplified due to severe
NUMA effects from the lower inter-GPU bandwidth. Distributed
CTA scheduling together with the first-touch page allocation mecha-
nism (described respectively in Sections 5.2 and 5.3) are also applied
to the multi-GPU. We refer to this design as a baseline multi-GPU
system. Although a full study of various multi-GPU design options
was not performed, alternative options for CTA scheduling and page
allocation were investigated. For instance, a fine grain CTA assign-
ment across GPUs was explored but it performed very poorly due to
the high interconnect latency across GPUs. Similarly, round-robin
page allocation results in very low and inconsistent performance
across our benchmark suite.

Remote memory accesses are even more expensive in a multi-
GPU when compared to MCM-GPU due to the relative lower quality
of on-board interconnect. As a result, we optimize the multi-GPU
baseline by adding GPU-side hardware caching of remote GPU
memory, similar to the L1.5 cache proposed for MCM-GPU. We
have explored various L1.5 cache allocation policies and configu-
rations, and observed the best average performance with a half of
the L2 cache capacity moved to the L1.5 caches that are dedicated
to caching remote DRAM accesses, and another half retained as the
L2 cache for caching local DRAM accesses. We refer to this as the
optimized multi-GPU.

Figure 17 summarizes the performance results for different build-
able GPU organizations and unrealizable hypothetical designs, all
normalized to the baseline multi-GPU configuration. The optimized
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multi-GPU which has GPU-side caches outperforms the baseline
multi-GPU by an average of 25.1%. Our proposed MCM-GPU on
the other hand, outperforms the baseline multi-GPU by an average
of 51.9% mainly due to higher quality on-package interconnect.

6.2 MCM-GPU Efficiency
Besides enabling performance scalability, MCM-GPUs are energy
and cost efficient. MCM-GPUs are energy efficient as they enable
denser integration of GPU modules on a package that alternatively
would have to be connected at a PCB level as in a multi-GPU case. In
doing so, MCM-GPUs require significantly smaller system footprint
and utilize more efficient interconnect technologies, e.g., 0.5 pJ/b on-
package vs 10 pJ/b on-board interconnect. Moreover, if we assume
almost constant GPU and system power dissipation, the performance
advantages of the MCM-GPU translate to additional energy savings.
In addition, superior transistor density achieved by the MCM-GPU
approach allows to lower GPU operating voltage and frequency. This
moves the GPU to a more power-efficient operating point on the tran-
sistor voltage-frequency curve. Consequently, it allows trading off
ample performance (achieved via abundant parallelism and number
of transistors in package) for better power efficiency.

Finally, at a large scale such as HPC clusters the MCM-GPU
improves performance density and as such reduces the number of
GPUs per node and/or number of nodes per cabinet. This leads to a
smaller number of cabinets at the system level. Smaller total system
size translates to smaller number of communicating agents, smaller
network size and shorter communication distances. These result in
lower system level energy dissipation on communication, power
delivery, and cooling. Similarly, higher system density also leads
to total system cost advantages and lower overheads as described
above. Moreover, MCM-GPUs are expected to result in lower GPU
silicon cost as they replace large dies with medium size dies that
have significantly higher silicon yield and cost advantages.

7 RELATED WORK
Multi-Chip-Modules are an attractive design point that have been
extensively used in the industry to integrate multiple heterogeneous
or homogeneous chips in the same package. For example, on the
homogeneous front, IBM Power 7 [5] integrates 4 modules of 8
cores each, and AMD Opteron 6300 [4] integrates 2 modules of
8 cores each. On the heterogeneous front, the IBM z196 [3] inte-
grates 6 processors with 4 cores each and 2 storage controller units
in the same package. The Xenos processor used in the Microsoft
Xbox360 [1] integrates a GPU and an EDRAM memory module
with its memory controller. Similarly, Intel offers heterogeneous
and homogeneous MCM designs such as the Iris Pro [11] and the
Xeon X5365 [2] processors respectively. While MCMs are popular
in various domains, we are unaware of any attempt to integrate ho-
mogeneous high performance GPU modules on the same package
in an OS and programmer transparent fashion. To the best of our
knowledge, this is the first effort to utilize MCM technology to scale
GPU performance.

MCM package level integration requires efficient signaling tech-
nologies. Recently, Kannan et al. [31] explored various packaging
and architectural options for disintegrating multi-core CPU chips
and studied its suitability to provide cache-coherent traffic in an

efficient manner. Most recent work in the area of low-power links
has focused on differential signaling because of its better noise im-
munity and lower noise generation [40, 44]. Some contemporary
MCMs, like those used in the Power 6 processors, have over 800
single-ended links, operating at speeds of up to 3.2 Gbps, from a sin-
gle processor [28]. NVIDIA’s Ground-Referenced Signaling (GRS)
technology for organic package substrates has been demonstrated
to work at 20 Gbps while consuming just 0.54pJ/bit in a standard
28nm process [45].

The MCM-GPU design exposes a NUMA architecture. One of the
main mechanisms to improve the performance of NUMA systems is
to preserve locality by assigning threads in close proximity to the
data. In a multi-core domain, existing work tries to minimize the
memory access latency by thread-to-core mapping [21, 38, 51], or
memory allocation policy [22, 27, 34]. Similar problems exist in
MCM-GPU systems where the primary bottleneck is the inter-GPM
interconnection bandwidth. Moreover, improved CTA scheduling
has been proposed to exploit the inter-CTA locality, higher cache
hit ratios, and memory bank-level parallelism [37, 41, 52] for mono-
lithic GPUs. In our case, distributed CTA scheduling along with
the first-touch memory mapping policy exploits inter-CTA locali-
ties both within a kernel and across multiple kernels, and improves
efficiency of the newly introduced GPM-side L1.5 cache.

Finally, we propose to expose the MCM-GPU as a single logical
GPU via hardware innovations and extensions to the driver software
to provide programmer- and OS-transparent execution. While there
have been studies that propose techniques to efficiently utilize multi-
GPU systems [20, 23, 33, 36], none of the proposals provide a fully
transparent approach suitable for MCM- GPUs.

8 CONCLUSIONS
Many of today’s important GPU applications scale well with GPU
compute capabilities and future progress in many fields such as exas-
cale computing and artificial intelligence will depend on continued
GPU performance growth. The greatest challenge towards building
more powerful GPUs comes from reaching the end of transistor den-
sity scaling, combined with the inability to further grow the area of
a single monolithic GPU die. In this paper we propose MCM-GPU,
a novel GPU architecture that extends GPU performance scaling at
a package level, beyond what is possible today. We do this by parti-
tioning the GPU into easily manufacturable basic building blocks
(GPMs), and by taking advantage of the advances in signaling tech-
nologies developed by the circuits community to connect GPMs
on-package in an energy efficient manner.

We discuss the details of the MCM-GPU architecture and show
that our MCM-GPU design naturally lends itself to many of the
historical observations that have been made in NUMA systems. We
explore the interplay of hardware caches, CTA scheduling, and data
placement in MCM-GPUs to optimize this architecture. We show
that with these optimizations, a 256 SMs MCM-GPU achieves 45.5%
speedup over the largest possible monolithic GPU with 128 SMs.
Furthermore, it performs 26.8% better than an equally equipped
discrete multi-GPU, and its performance is within 10% of that of a
hypothetical monolithic GPU that cannot be built based on today’s
technology roadmap.
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